Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2018.05a
/
pp.88-90
/
2018
There are many studies on IR-UWB Radar. A number of studies have been conducted on the Personnel count and measurement distance to person, mainly using IR-UWB. In this paper, however, we use IR-UWB Radar to distinguish objects. In order to distinguish these objects, in this paper, the IR-UWB radar is operated by positioning the object at a certain distance and the object is classified by using the size and shape of the wave reflected by the object. To distinguish objects using only the size and shape of these waveforms, SVM (Support Vector Machine) was used to classify objects by learning shape and size of waveforms. In this paper, we show that the size and shape of the waveform received by the IR-UWB Radar can be identified by SVM pattern learning.
This paper presents a method of object classification based on discrete wavelet transform (DWT) and fuzzy inference(FI). It concentrated not only on the design of fuzzy inference algorithm which is suitable for low speed uninhabited transportation such as, conveyor but also on the minimize the number of fuzzy rule. In the preprocess of feature extracting, feature parameters are extracted by using characteristics of the coefficients matrix of DWT. Such feature parameters as area, perimeter and a/p ratio are used obtained from DWT coefficients blocks. Secondly, fuzzy if - then rules that can be able to adapt the variety of surroundings are developed. In order to verify the performance of proposed scheme, In the middle of fuzzy inference, the Mamdani's and the Larsen 's implication operators are utilized. Experimental results showed that proposed scheme can be applied to the variety of surroundings.
In this paper, the 3-D shape description for the objects with the cone ridge and valley surfaces, and the corresponding threshold value selection for surface classification are considered. The existing method based on the mean and Gaussian curvatures(H and K) of differential geometries cannot properly describe cone primitives, which are some of the most common objects in the real world. Also the existing method for surface classification based on the sign values of H and K has Problems in practical applications. For this, cone surface shapes are classified cone ridges and cone valleys are derived from surfaces using the fact that H values are constant case of cylinder surfaces and variable for cone surfaces, respectively. Also threshold value selection for surface classification from a statistical point of view is proposed. The effectiveness of the proposed methods are verified through experiments.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2009.10a
/
pp.574-578
/
2009
Real-time object detection for distinguishing a moving object of interests from the background image in still image or video image sequence is an essential step to a correct object tracking and recognition. Moving cast shadow can be misclassified as part of objects or moving objects because the shadow region is included in the moving object region after object segmentation. For this reason, an algorithm for shadow removal plays an important role in the results of accurate moving object detection and tracking systems. To handle with the problems, an accurate algorithm based on the features of moving object and shadow in color space is presented in this paper. Experimental results show that the proposed algorithm is effective to detect a moving object and to remove shadow in test video sequences.
Journal of the Korean Institute of Intelligent Systems
/
v.7
no.4
/
pp.18-28
/
1997
This paper presents image data compression using a classified vector quantization (CVQ) which categories
edge blocks according to the energy distribution of subimages in the discrete cosine transform
domain. Classifying the edge blocks enhances visual quality of the compressed images while maintaining
a high compression ratio. The proposed classification method categories subimages into eight
lypes of edge features according to an energy distribution. A neural network, trained with the data generated
from the proposed classification method, can successfully classify subimages to eight edge categories.
Experimental results are given to show how the (1VQ method incorporatd with a neural network
can produce faithful compressed image quality for high compression ratios.
지형지물은 각각의 특징적 요인을 내포하고 있다. 이 특징적 요인들은, 공간해상도에 따라 정도의 차이가 있겠지만, 수집된 위성영상에도 반영된다. 이러한 요인들 중에서는 영상분류에 활용될 경우 영상 분류의 정확도를 높혀 주고, 때로는 이것이 거의 물체인식의 수준까지 기여할 수 있는 것들이 있다. 이 연구에서는 텍스춰 및 지형지물의 배열에 있어서 특징적 현상을 보이는 비닐하우스를 대상으로 spatial auto-corelation 개념을 기반으로 자동적으로 이를 인지하는 방법을 개발하였다. 사용된 알고리즘은 디지타이징과 같은 사람의 직접적인 개입이 없이 자동화된 방법으로 비닐하우스의 특정한 패턴이 반복적으로 나타나는 것을 감지할 수 있도록 개발되었다. 패턴의 인식에 더하여 비닐하우스의 기하학적 모양을 고려하는 방법도 도입하였다. 그럼으로써 비닐하우스의 추출에 단순히 화소 단위의 분석이 아닌 보다 객체지향적인 방법으로 비닐하우스를 추출하도록 하였다. 개발된 방법을 제주지역의 IKONOS에 적용시켜 본 결과, 연구대상지역 내의 비닐하우스가 매우 정확하게 적출되었다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2016.06a
/
pp.284-287
/
2016
영상에서 배경으로부터 객체를 분류하는 영상 분류 알고리즘은 물체 인식 및 추적 등 다양한 응용분야에서 중요하다. 본 논문에서는 고정된 카메라에서 다수의 초기 프레임을 참조하여 실시간 영상 분류 방법을 제안한다. 먼저 전경과 배경을 구분하는 확률모델을 제안하였으며 초기 프레임 동안에 카메라의 특성을 추출하여 카메라에 적응적으로 영상을 분류한다. 또한 분류된 영상에서 human의 특징을 이용하여 분류된 결과를 보정하는 방법을 제안한다. 마지막으로 제안한 알고리즘의 실시간 분류 처리를 위하여 복잡도를 최소화 하였다.
Proceedings of the Korea Contents Association Conference
/
2003.05a
/
pp.426-429
/
2003
This paper proposes the threshold value selection for surface classification of 3-dimensional objects. Pre-existing method which uses the H-curvature and K-curvature has limitation in the practical threshold value selection. For this, this paper proposes the threshold value selection by the statistical method. Finally, the effectiveness of this paper demonstrated by experiment.
Journal of the Korean Society of Environmental Restoration Technology
/
v.7
no.3
/
pp.48-55
/
2004
본 연구는 중 저해상도 위성영상을 이용하여 하천주변 습지를 판별해내는 보다 개선된 기법을 개발해 내는데 그 목적이 있다. 중 저해상도 위성영상의 하나의 화소는 일반적으로 하나의 동질한 물체의 분광반사값을 나타내기보다는 다양한 분광값을 가진 물체들의 대표값으로 나타나게 된다. 특히 본 연구에서는 식생, 수문 및 토양요소의 혼합체인 습지의 판별을 위해서, 하나의 화소가 하나의 물체를 대표함을 전제로 하는 기존의 분석방법 보다는, 혼합화소 (mixed pixel)를 대상지 의 토지 피복을 가장 잘 반영 하는 순수한 화소값(endmember)들로 분해함으로써 보다 정확한 판별 및 분류를 가능케 하고자 하였다. 이를 위하여 일반적으로 극세분광 위성영상의 분석에 활용되는 기법인 분광혼합화소분석(Spectral Mixture Analysis)을 이용하였는데, 습지 각 화소의 식생, 수문 및 토양요소의 흔합정도를 분해한 후, 이들의 분할영상 (fraction images)을 추출해내고 이를 분석에 이용하였다. 팔당상수원보호구역의 소택형 습지를 대상으로 봄 가을의 Landsat 영상에 대한 분석을 수행하였으며, 도출된 결과는 다음과 같다. 첫째, 봄 가을 각각의 영상에 대하여 4개씩 endmember를 선정하였으며, 분할영상과 원자료 각각에 대하여 습지판별을 수행한 결과, 가을영상에 대하여 분할영상을 이용한 방법의 소택 형 습지 판별 정확도가 가장 높은 값을 보여주었다(생산자 정확도 : 83.3%, 사용자 정확도 : 86.5%). 둘째, 소택형 습지로 판별된 지역만을 대상으로 보다 세분화된 분류가 가능한 지 알아보기 위하여 소택형 습지로 판별된 지역의 영상에 대해 ISODATA 무감독분류를 수행한 결과 2개의 클러스터로 대별되었다. 현장조사, 기존 연구의 수심자료 및 식생에 대한 조사를 바탕으로 위의 2개의 클러스터를 조사한 결과, 수문조건에 따른 분류인 아계(subsystem) 단계의 '영구적 침수형 소택형 습지'와 '계절적 침수형 소택형 습지'로 분류할 수 있었다.
실감모델링(Immersive modeling)이란 모델링하는 사람이 물체의 특성을 고려하여 오감을 활용하여 모델링하는 것을 의미한다. 실감모델링을 위한 오감 중에서 시각은 모델링하는 사람에게 가장 영향을 많이 주기 때문에 실제와 같은 색상과 형상을 생성하는 것이 중요하다. 그러나 가상현실을 위한 데이터를 실시간으로 다루기 위해 많은 데이터를 사용할 수 없고 처리 과정이 단순해야 하기 때문에 시각데이터를 획득하는 과정에도 이를 고려해야 한다. 그 중에서 반짝이는 특성을 가진 물체의 색을 정확히 표현하기 위한 방법으로 색상선(color line)을 사용한다. 색상선은 반짝이는 특성의 표면의 색을 이색성반사 모델(dichromatic reflection model)로 간주하면 색 특성을 표현하는 선이 생성되게 된다. 본 연구는 반짝이는 물체로부터 색상선을 추출하기 위한 방법으로 노출 시간이 다른 여러 장의 이미지로부터 색상을 추출하는 방법을 제안한다. 노출 시간이 다른 이미지를 사용함으로써 한 장에 의해 분류하기 어려운 색상도 분류 가능하고 하이라이트가 발생하여 색상이 왜곡된 경우도 본래 색이 어떤 색상인지 추정되기 때문에 정확한 색상 추출이 된다. 본 연구에서는 3차원 측정 장비를 이용하여 3차원 형상과 색상이 동시 추출된 모델을 이용하여 렌더링된 결과와 제안된 방법으로 추출된 색상을 적용하여 렌더링된 결과를 비교할 것이다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.