• Title/Summary/Keyword: 물질전달 촉진

Search Result 98, Processing Time 0.028 seconds

Anti-oxidative Effect of Chungsimyeonja-um (CSYJE) via Nrf2/HO-1 Pathway Activity in Lipopolysaccharide (LPS) Induced RAW 264.7 Macrophages (대식세포에서 Nrf2/HO-1경로를 통한 청심연자음의 항산화효과)

  • Jeon, Seon Hong;Oh, Sol La;Kim, So Jeong;Jeon, Bo Hee;Sung, Jin Young;Kim, Yong Min
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.46 no.3
    • /
    • pp.253-263
    • /
    • 2020
  • Reactive oxygen species (ROS) plays an important role in maintaining homeostasis. However, excessive ROS production damages cellular components such as proteins, lipids, and nucleic acids and promotes skin aging. In this study, we confirmed the antioxidant effect of CSYJE to prevent excessive oxidative stress. First, DPPH and ABTS assays were performed to confirm the antioxidant effect of CSYJE and the radical scavenging activity was confirmed depending on the concentration. As a result of performing the MTT assay to confirm the cell viability, it was confirmed that there was no cytotoxicity at a concentration of 1,000 ㎍/mL. As a result of western blotting to confirm the expression levels of the antioxidant-related proteins nuclear-E2-related factor 2 (Nrf2) and Heme oxygenase-1 (HO-1), it was confirmed that the expression was increased in a concentration-dependent manner. After inducing ROS with lipopolysaccharide (LPS), an intracellular ROS-causing substance, DCF-DA was performed to confirm the inhibitory effect of ROS production, and the inhibition of ROS production was confirmed to concentration-dependent. Real-time RT-PCR was performed to confirm the mRNA expression level of inflammatory cytokines and inflammatory mediator caused by ROS generation, mRNA expression was reduced in a dose dependent manner. Therefore, this study confirmed the antioxidant effect of CSYJE through the Nrf2/HO-1 signaling pathway, which suggests that CSYJE can be used as an antioxidant cosmetic material by inhibiting free radicals.

Inhibition of PI3K/AKT Signaling Pathway Enhances Cordycepin-Induced Apoptosis in Human Gastric Cancer Cells (인체위암 세포에서 PI3K/AKT 신호 전달계 차단에 의한 동충하초 유래 Cordycepin의 Apoptosis 유발 효과 증진)

  • Lee, Hye Hyeon;Jeong, Jin-Woo;Choi, Yung Hyun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.6
    • /
    • pp.835-842
    • /
    • 2016
  • The phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway plays a crucial role in cancer occurrence by promoting cell proliferation and inhibiting apoptosis. In the present study, we evaluated the effect of a PI3K inhibitor, LY294002, on the chemosensitivity of gastric cancer cells to cordycepin, a predominant functional component of the fungus Cordyceps militaris, in AGS human gastric cancer cells and investigated possible underlying cellular mechanisms. Our results revealed that cordycepin inhibited viability of AGS cells in a concentration-dependent manner and induced apoptosis, as determined by apoptotic cell morphologies and fluorescence-activated cell sorting analysis associated with attenuated activation of the PI3K/Akt signaling pathway. Treatment with cordycepin in combination with a subtoxic concentration of LY294002 enhanced cordycepin-induced cytotoxicity and apoptotic potentials in AGS cells. Sensitization of LY294002 to cordycepin-induced apoptosis was accompanied by activation of caspases (caspases-3, -8, and -9) and was concomitant with poly(ADP-ribose) polymerase cleavage. Moreover, LY294002 up-regulated pro-apoptotic Bax and enhanced truncation of Bid in cordycepin-treated AGS cells, which was connected with increased loss of mitochondrial membrane potential and release of cytochrome c from mitochondria to the cytosol. Taken together, these results indicate that inhibition of the PI3K/Akt signaling pathway could augment cordycepin-induced apoptosis in human gastric cancer cells by up-regulating caspase activity through mitochondrial dysfunction.

The Effects of Oviduct and Uterine Epithelial Cells on the Expression of Interleukin-$1\beta$ Gene in Preimplantation Mouse Embryos (생쥐 초기배아에서 Interleukin-$1\beta$ 유전자의 발현에 미치는 수란관과 자궁내막세포의 영향)

  • 홍석호;계명찬;김종월;이정복;오은정;조동제;최규완;김문규
    • Development and Reproduction
    • /
    • v.3 no.1
    • /
    • pp.59-67
    • /
    • 1999
  • To investigate the role of interleukin-l$\beta$ (IL-1$\beta$) in the embryonic development, in vivo and in vitro expression patterns of IL-1$\beta$ gene in the preimplantation mouse embryos were examined by RT-PCR, and the effects of explanted mouse ovi-duct and uterine epithelial cells on the expression of IL-1$\beta$ gene in the pleimplantation mouse embryos were examined by co-culture. IL-1$\beta$ mRNA was detected in the embryos from 4-cell stage to blastocyst stage in vivo and from morula stage to hatching blastocyst stage in vitro. This transcript was not detected from the GV stage to late 2-cell stage in vivo, and not at the 4-cell and 8-cell stages in vitro. For the co-culture of late 2-cell embryos with the explanted mouse oviduct and uterine epithelial cells, oviducts and uterine epithelial cells were isolated at 48 hour alter the hCG injection. The explanted oviduct and uterine epithelial cells in co-culture groups facilitated the IL-1$\beta$ gene expression of the mouse embryos in comparison with the control. Taken together these results suggest that the presence of IL-1$\beta$ plays an important role in preimplantation embryonic development. In addition, the up-regulation of IL-1$\beta$ gene expression by the explanted oviduct and uterine epithelial cells demonstrates that embryonic expression of IL-l$\beta$ gene may be regulated by the interaction with oviductal and uterine factor (s).

  • PDF

Sleep-Induction Effects of GABA Coated Rice from Fermentation of Mono Sodium Glutamate (Mono Sodium Glutamate 발효로 얻은 GABA 코팅 쌀에 의한 수면유도 효과)

  • Kim, Ok Ju;Lee, Jeong Kwang;Woo, Young Min;Choi, Seung Tae;Park, Mi Yeon;Kim, Andre;Ha, Jong-Myung
    • Applied Chemistry for Engineering
    • /
    • v.24 no.6
    • /
    • pp.605-610
    • /
    • 2013
  • Gamma-aminobutyric acid (GABA) is a non-protein amino acid widely present in organisms, which has shown several important physiological functions such as neurotransmission, hypotension induction, as well as diuretic and tranquilizer effects. They have also been extensively used in food industry. GABA contents in the grain and brown rice are about 1~4 mg/100 g and 4~8 mg/100 g, respectively but it is difficult to expect physiological activity from such low amounts of natural food intake. We investigate the effects of GABA-coated rice on the secretion of melatonin and serotonin which both have been used as sleep inductive compounds. As a result, the secretion of melatonin and serotonin from mice were found to be $3.578{\pm}0.158pg/mL$, $5.918{\pm}0.169ng/mL$ respectively. The melatonin and serotonin in mice increased significantly up to the 8.7 and 22.8 times respectively, when compared to that of the rice, but there was no cumulative effects. Due to the continuous intake of GABA-coated rice, which was developed as a functional food nutrient, inductive effects of melatonin and serotonin from general rice could be achieved and also the similar effect as taking up directly 25 mg/mL of GABA could be obtained.

Effect of Fermented Platycodon grandiflorum Extract on Cell Proliferation and Migration in Bovine Aortic Endothelial Cells (혈관내피세포의 성장 및 세포 이동에 영향을 미치는 발효도라지추출물의 효과)

  • Choi, Woosoung;Song, Jina;Park, Mi-Hyeon;Yu, Heui Jong;Park, Heonyong
    • Journal of Life Science
    • /
    • v.26 no.1
    • /
    • pp.59-67
    • /
    • 2016
  • Platycodon grandiflorum A. De Candolle (Korean name, ‘Doraji’) is a perennial plant containing various triterpenoid saponins. The roots of this plant have traditionally been used as a food material in Korea. Here, we prepared a fermented P. grandiflorum extract (PG). Although it was previously reported that P. grandiflorum A. extract has a variety of physiological functionalities, including anti-inflammatory and anti-oxidant activities, little is known about its vascular functions. In this study, we executed a series of experiments to identify the effect of PG on endothelial cells. PG at a high concentration (100 μg/ml) was found to induce cell detachment, whereas PG at a low concentration (0.1 μg/ml) appeared to promote cell proliferation and migration in bovine aortic endothelial cells. The cell detachment induced by the high concentration was not associated with cell death, such as apoptosis, necrosis, and autophagy. In addition, we found that PG at the high concentration formed a small vesicular structure called an endothelial microparticle (EMP). The EMP was prepared by centrifugal fractionation and determined with flow cytometry and a microscope. Interestingly, PG-induced cell detachment was found to be mediated by EMP. We furthermore determined that PG at the low concentration activated Akt, a crucial cell-signaling molecule, and then controlled cell proliferation and migration. Overall, our findings suggest that PG at low doses maintains vascular stability by promoting endothelial cell proliferation, and enhances the efficacy of wound healing by cell proliferation and migration activity.

Immuno-Modulatory Activities of Polysaccharides separated from Chrysanthemum zawadskii var. latilobum in Macrophage Cells (구절초(Chrysanthemum zawadskii var. latilobum)에서 분리된 다당류의 대식세포 면역조절 활성)

  • Sung, Nak-Yun;Park, Yoo-Young;Kim, Yi-Eun;Cho, Eun-Ji;Kim, Mi-Hwan;Ryu, Gi-Hyung;Byun, Eui-Hong;Park, Youn-Je
    • The Korean Journal of Food And Nutrition
    • /
    • v.29 no.3
    • /
    • pp.431-437
    • /
    • 2016
  • Macrophages play a pivotal role in the innate and adaptive immune systems. This study investigated the immuno-modulatory activities of polysaccharides separated from Chrysanthemum zawadskii var. latilobum (CZPS) in macrophages. Polysaccharides from Chrysanthemum zawadskii var. latilobum were extracted by the ethanol precipitation method. RAW 264.7 mouse macrophage cell line was treated with CZPS (4 to $128{\mu}g/mL$), and there was no cytotoxicity at a dose below $32{\mu}g/mL$. The levels of nitric oxide (NO) and pro-inflammatory cytokines (tumor necrosis factor (TNF)-${\alpha}$ and interleukin (IL)-6, IL-$1{\beta}$) production in the CZPS treated group ($32{\mu}g/mL$) were $6.5{\pm}0.12{\mu}m$ (NO), $1252.8{\pm}79.85$ (TNF-${\alpha}$), $305.4{\pm}29.41$ (IL-6), and $683.3{\pm}59.71$ (IL-$1{\beta}$), respectively, and they were significantly increased when compared to the control group; $2.2{\pm}0.03{\mu}m$ (NO), $452.3{\pm}38.34$ (TNF-${\alpha}$), $31.7{\pm}5.75$ (IL-6), and $184.1{\pm}11.52$ (IL-$1{\beta}$). Additionally, protein expression of inducible nitric oxide synthase (iNOS) and phosphorylation of MAPKs and NF-${\kappa}B$ expression were significantly increased upon CZPS treatment. Therefore, these results indicated that polysaccharides separated from Chrysanthemum zawadskii var. latilobum (CZPS) may have a potential immunomodulatory activity in macrophages through MAPKs and NF-${\kappa}B$ signaling, and this information is useful for the development of immune enhancing adjuvant materials using a natural ingredient.

Butyrate Ameliorates Lipopolysaccharide-induced Myopathy through Inhibition of JNK Pathway and Improvement of Mitochondrial Function in C2C12 Cells (C2C12 세포에서 lipopolysaccharide에 의해 유도된 근육위축증에 대한 butyrate의 개선효과: JNK 신호전달 억제와 미토콘드리아의 기능 개선)

  • Pramod, Bahadur KC;Kang, Bong Seok;Jeoung, Nam Ho
    • Journal of Life Science
    • /
    • v.31 no.5
    • /
    • pp.464-474
    • /
    • 2021
  • Inflammation induced by metabolic syndromes, cancers, injuries, and sepsis can alter cellular metabolism by reducing mitochondrial function via oxidative stress, thereby resulting in neuropathy and muscle atrophy. In this study, we investigated whether butyrate, a short chain fatty acid produced by gut microbiota, could prevent mitochondrial dysfunction and muscle atrophy induced by lipopolysaccharide (LPS) in the C2C12 cell line. LPS-activated MAPK signaling pathways increased the levels of the mitochondrial fission signal, p-DRP1 (Ser616), and the muscle atrophy marker, atrogin 1. Interestingly, butyrate significantly inhibited the phosphorylation of JNK and p38 and reduced the atrogin 1 level in LPS-treated C2C12 cells while increasing the phosphorylation of DRP1 (Ser637) and levels of mitofusin2, which are both mitochondrial fusion markers. Next, we investigated the effect of MAPK inhibitors, finding that butyrate had the same effect as JNK inhibition in C2C12 cells. Also, butyrate inhibited the LPS-induced expression of pyruvate dehydrogenase kinase 4 (PDK4), resulting in decreased PDHE1α phosphorylation and lactate production, suggesting that butyrate shifted glucose metabolism from aerobic glycolysis to oxidative phosphorylation. Finally, we found that these effects of butyrate on LPS-induced mitochondrial dysfunction were caused by its antioxidant effects. Thus, our findings demonstrate that butyrate prevents LPS-induced muscle atrophy by improving mitochondrial dynamics and metabolic stress via the inhibition of JNK phosphorylation. Consequently, butyrate could be used to improve LPS-induced mitochondrial dysfunction and myopathy in sepsis.

The Effect of Electrode Spacing and Size on the Performance of Soil Microbial Fuel Cells (SMFC) (전극간 거리와 크기가 토양미생물연료전지의 성능에 미치는 영향)

  • Im, Seong-Won;Lee, Hye-Jeong;Chung, Jae-Woo;Ahn, Yong-Tae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.11
    • /
    • pp.758-763
    • /
    • 2014
  • Soil microbial fuel cells (SMFC) have gained a great attention as an eco-friendly technology that can simultaneously generate electricity and treat organic pollutants from the contaminated soil. We evaluated the effect of electrode spacing and size on the performance of SMFC treating soil contaminated with organic pollutants. Maximum power density decreased with increase in electrode distance or decrease in electrode size, likely due to higher internal resistance. The maximum voltage and power density decreased from 326 mV and $19.5mW/m^2$ with 4 cm of electrode distance to 222 mV and $5.9mW/m^2$ with 9 cm of electrode distance. In case of electrode size test, the maximum voltage and power density generated was 291 mV, $0.34mW/m^3$ when both of anode and cathode area were $64cm^2$ with 4 cm of electrode distance. The maximum voltage decreased by 19~29% when the anode area decreased to $16cm^2$ while only 3~12% of voltage decreased with cathode area decrease. The maximum power density decreased by 49~68% with decreasing anode size, and by 29~47% with decreasing cathode size. These results showed that the anode area had more significant effects than the cathode area on the power generation of SMFC which has a high internal resistance due to a coexistence of soil and wastewater in the reactor.

Double-processed ginseng berry extracts enhance learning and memory in an Aβ42-induced Alzheimer's mouse model (Aβ42로 유도된 알츠하이머 마우스 모델에서 이중 가공 인삼열매 추출물의 학습 및 기억 손실 개선 효과)

  • Jang, Su Kil;Ahn, Jeong Won;Jo, Boram;Kim, Hyun Soo;Kim, Seo Jin;Sung, Eun Ah;Lee, Do Ik;Park, Hee Yong;Jin, Duk Hee;Joo, Seong Soo
    • Korean Journal of Food Science and Technology
    • /
    • v.51 no.2
    • /
    • pp.160-168
    • /
    • 2019
  • This study aimed to determine whether double-processed ginseng berry extract (PGBC) could improve learning and memory in an $A\hat{a}42$-induced Alzheimer's mouse model. Passive avoidance test (PAT) and Morris water-maze test (MWMT) were performed after mice were treated with PGBC, followed by acetylcholine (ACh) measurement and glial fibrillary acidic protein (GFAP) detection for brain damage. Furthermore, acetylcholinesterase (AChE) activity and choline acetyltransferase (ChAT) expression were analyzed using Ellman's and qPCR assays, respectively. Results demonstrated that PGBC contained a high amount of ginsenosides (Re, Rd, and Rg3), which are responsible for the clearance of $A{\hat{a}} 42$. They also helped to significantly improve PAT and MWMT performance in the $A{\hat{a}} 42-induced$ Alzheimer's mouse model when compared to the normal group. Interestingly, ACh and ChAT were remarkably upregulated and AChE activities were significantly inhibited, suggesting PGBC to be a palliative adjuvant for treating Alzheimer's disease. Altogether, PGBC was found to play a positive role in improving cognitive abilities. Thus, it could be a new alternative solution for alleviating Alzheimer's disease symptoms.

A Study on the Development Strategy of the Foods Package Design (식품 패키지디자인 개발 전략에 관한 연구)

  • Choi, Jeong-Gye;Lee, Sang-Youn
    • The Korean Journal of Franchise Management
    • /
    • v.2 no.2
    • /
    • pp.45-69
    • /
    • 2011
  • A basic function of packaging is preservability, delivery, subdivision, aesthetic and serviceability on packaging. Originally, the function and necessity of packaging is on preservability, but today it is expending before. then packaging is focusing on sales promotion. Although it is hard to say production itself, it could does when it is made. also, it is important for product to be goods when packaging and its materials are identification on matching each other. The role of packaging design is a core factor that satisfy consumer a various of needs and wants. In the past, the role of food packaging design is just preservability and delivery on product. but then, nawaday it is asked a various role. Not only present products have to get inherency but also have added value. That is, advanced technologies, information, and richness from materials which are diversity for coming a extention of choice. currently, food packaging design shouldn't have stayed on just packaging which cover beautiful. Packaging design is a symbolic sign. It is importance for manager to do R&D, producing, and distribution, also for consumer who use and buy the product whether manager and consumer think package design is a main mediation. This day, food design pay attention to be asking consumer's a number of sensitivity. It is the reason that the package is importance and exist. This article is to examine preservability, delivery, subdivision, aesthetic, serviceability, and environmental orientation in order to develop and show a method and theories to find package design in food industry the reason that why sales promotion and its profit increase. Consequently, draw on the function of package design effects the benefit on product is distribution. Green Design on the food packages by combining recycled and biodegradable food packages for the development of practices and long life to the look of the food package design practices.