• Title/Summary/Keyword: 물질전달

Search Result 1,642, Processing Time 0.031 seconds

Mass Transfer of Citric and Acetic Acid by Reactive Extractant in Batch Extractor (회분식 추출기에서 반응추출제에 의한 구연산과 초산의 물질이동)

  • Lee, Han-Seob
    • Applied Chemistry for Engineering
    • /
    • v.5 no.2
    • /
    • pp.223-229
    • /
    • 1994
  • The effect of agitation speed on mass transfer coefficient in the extraction of citric acid from mixed aqueous solutions of citric and acetic acid with n-butylacetate solutions of di-isotridecylamine(DITDA) and 50% mixture of tri-n-octyl and try-n-hexyl phosphine oxide(MOHPO), were studied in batch extractor. Experimental results showed that the degree of extraction was higher with increasing agitation speed, and was best at 200rpm and 30 minutes in batch extractor. The higher degree of extraction was obtained in mixed solution of citric-acetic acid by using DITDA than MOHPO as an carrier. Mass transfer coefficient was proportional to the degree of extraction, and $K_r=1.254{\times}10^{-3}Re^{0.536}$ was found for she extraction of citric acid by DITDA.

  • PDF

Phospholipase C isozyme들과 조절물질 선별체계

  • 민도식;이영한;서판길;류성호
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1993.04a
    • /
    • pp.63-63
    • /
    • 1993
  • Phospoinositide-specific phospholipase C (PLC)는 세포막의 phosphoinositide를 분해하여 inositol phosphates와 diacylglycerol을 전달하는데 핵심적인 효소이다. PLC는 분자량과 1차구조의 비교에 의하여 type (PLC-$\beta$, ${\gamma}$, $\delta$)로 구분되며, 각 type마다 2-4종의 subtype이 존재하고 PLC isozyme들에 대한 현재가지의 각종 신호 전달 및 조절에 대한 연구를 종합하면: (1) PLC-$\beta$ type은 G-protein과 연결되어 신호를 전달받고, (2) PLC-${\gamma}$ type은growth factor receptor tyrosine kinase에 의하여 인산화 되어 활성화됨으로, 세포의 성장 신호를 전달하며. (3) PLC-$\delta$ type에 대한 신호 전달이나 조절은 밝혀지지 않고 있다.

  • PDF

Mathematical Modeling for Leaching and dissolution of Solidified Radioactive Waste in a Geologic Reposiory (지하 처분장에서의 방사성폐기물 고화체의 용출 및 용해에 대한 수학적 모형 분석)

  • Kim, Chang-Lak;Park, Kwang-Sub;Cho, Chan-Hee;Kim, Jhinwung;Suh, In-Suk
    • Nuclear Engineering and Technology
    • /
    • v.20 no.2
    • /
    • pp.120-131
    • /
    • 1988
  • A souce term model describes mathematically the source of radionuclides as they begin slow migration and decay in deep groundwater. Various source term models based on mass-transfer analysis and measurement-based source term models are reviewed. Ganerally, two processes are involved in leaching or dissolution: (1) chemical reactions and (2) mass transfer by diffusion. The chemical reaction controls the dissolution rates only during the early stage of exposure to groundwater. The exterior-field mass transfer may control the long term dissolution rates from the waste solid in a geologic repository. Mass-transfer analyses re3y on detailed and careful application of the governing equations that describe the mechanistic processes of transport of material between and within phases. If used correctly, source term models based on mass-transfer theory are valuable and necessary tools for developing reliable predictions.

  • PDF

Basic Analysis of Heat and Mass Transfer Characteristics of Tubular Membrane Humidifier for Proton Exchange Membrane Fuel Cell (이온교환막 연료전지용 원통형 막 가습기의 열 및 물질전달특성 기초 연구)

  • Bae, Ho-June;Ahn, Kook-Young;Lee, Young-Duk;Kang, Sang-Kyu;Yu, Sang-Seok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.5
    • /
    • pp.473-480
    • /
    • 2011
  • The proton exchange membrane (PEM) fuel cell system is critically dependent on the humidity, which should be properly maintained over the entire operating range. A membrane humidifier is used for the water management in the PEMFC because of the membrane humidifier's reliable performance and zero parasitic power loss. In the PEMFC system, the membrane humidifier is required to provide appropriate humidity for the design point of the fuel cell. Although the performance of the fuel cell depends on the performance of the humidifier, few studies have provided a systematic analysis of the humidifier. We carry out an experimental analysis of the membrane humidifier using a vapor condensation bottle. The dry air pressure, water flow temperature, and air flow rate were chosen as the operating parameters. The results show that the time constant for the dynamic response of the membrane humidifier is relatively short, but additional analysis should be carried out.

Analysis of the Behavior of Tubular-Type Equipment for Nuclear Waste Treatment : Sensitivities of the Parameters Affecting Mass Transfer Yield (방사성폐기물의 화학처리공정에 사용되는 유동관식 장치의 해석 : 물질전달 수율에 미치는 매개변수들의 민감도)

  • Yoo, Jae-Hyung;Lee, Byung-Jik;Shim, Joon-Bo;Kim, Eung-Ho
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.5 no.1
    • /
    • pp.91-99
    • /
    • 2007
  • It was intended in this study to investigate the effects of various parameters on the chemical reaction or mass transfer yield in a tubular-type nuclear waste treatment equipment. Since such equipments, as a tubular reactor, multistage solvent extractor, and adsorption column, accompany chemical reaction or mass transfer along the fluid-flowing direction, mathematical modeling for each equipment was carried out first. Then their behaviors of the chemical reaction or mass transfer were predicted through computer simulations. The inherent major parameters for each equipment were chosen and their sensitivities. affecting the reaction or mass transfer yield were analyzed. For the tubular reactor, the effects of axial diffusion coefficient and reaction rate constant on the reaction yield were investigated. As for the multistage solvent extractor, the backmixing of continuous phase and the distribution coefficient between fluid and solvent were considered as the major parameters affecting the extraction yield as well as concentration profiles throughout the axial direction of the extractor. For the adsorption column, the equilibrium constant between fluid and adsorbent surface, and the overall mass transfer coefficient between the two phases were taken as the major factors that affect the adsorption rate.

  • PDF

Analytical trends in mass spectrometry based metabolomics approaches of neurochemicals for diagnosis of neurodegenerative disorders (퇴행성신경질환의 진단을 위한 신경전달물질 대사체의 질량 분석법 동향)

  • Lee, Na-Kyeong;Jeon, Won-Jei;Jeong, Seung-Woo;Byun, Jae-Sung;Lee, Wonwoong;Hong, Jongki
    • Analytical Science and Technology
    • /
    • v.30 no.6
    • /
    • pp.355-378
    • /
    • 2017
  • Because neurochemicals are related to homeostasis and cognitive and behavioral functions in human body and because they enable the diagnosis of numerous neurodegenerative disorders, there has been increasing interest in the development of analytical platforms for neurochemical profiling in biological samples. In particular, mass spectrometry (MS)-based analytical methods combined with chromatographic separation have been widely used to profile neurochemicals in metabolic pathways. However, development of delicate sample preparation procedures and highly sensitive instrumental detection is necessary considering the trace levels and chemical instabilities of neurochemicals in biological samples. Therefore, in this review, analytical trends in MS-based metabolomics approaches to neurochemicals in multiple biological samples, such as urine, blood, CSF, and biological tissues, are discussed. This paper is expected to contribute to the development of an analytical platform to discover biomarkers that will aid diagnosis, prognosis, and treatment of neurodegenerative disorders.

A Numerical Study on the Performance and Transfer Characteristics of Phosphoric Acid Fuel Cell (인산형 연료전지의 성능 및 전달현상에 관한 연구)

  • 전동협;채재우
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1994.11a
    • /
    • pp.9-13
    • /
    • 1994
  • 인산형 연료전지내 열 및 물질전달 특성에 대하여 FDM과 시행착오법에 의하여 3차원 해석이 이루어졌다. Z병행류와 Z대향류를 대상으로 냉각공기 유입방향을 바꿔가며 전류밀도가 평균온도, 전압, 온도분포차, 전류밀도분포차에 미치는 영향에 대하여 고찰하였다. 본 연구의 결과로 Stack에서의 최적조건을 도출하여 연료전지의 성능향상에 도움이 되리라 기대된다.

  • PDF

A Study on the Fin Efficiency of Continuous Fin with Combined Heat and Mass Transfer (열과 물질 전달을 수반하는 연속휜의 휜효율에 관한 연구)

  • 정세환
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.4
    • /
    • pp.445-450
    • /
    • 1998
  • In the present paper the effects of combined heat and mass transfer on the fin efficiency were calculated. Sector method was used for calculating the fin efficiency of the continuous fin. The parameter Lewis No. and C which describe the combined heat and mass transfer is derived by using the heat and mass transfer analogy and effects of Lewis No. and C on the fin efficiencies were calculated.

  • PDF

Computer Simulation to Estimate the Shelf Life of a Packaged Vitamin Tablet (포장된 비타민의 보관수명 예측을 위한 컴퓨터 시뮬레이션)

  • Kim, Jai-Neung
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.8 no.2
    • /
    • pp.60-72
    • /
    • 2002
  • 포장된 복합비타민의 보관수명을 예측하기 위한 수학모델을 수치해석의 방법 중 finite difference method을 이용한 컴퓨터 프로그램을 개발하였다. 이 컴퓨터 프로그램에는 포장재료의 수분확산계수와 용해도를 비롯한 식품의 수분확산계수 등 다양한 인자들을 포함하고 있다. 포장재료를 통과하는 수분의 물질전달은 G.A.B water sorption isotherm을 기본으로 했다. 본 연구에서는 비정상상태에서의 물질전달로 기본 수학모델링을 구하였다. 본 수학모델과 프로그램의 결과는 실험치와 비교하지 않았고 대신 특정한 경우를 가상하여 이에 존재하는 analytical solutions를 실제로 구하여 본 수학모델과 컴퓨터 프로그램의 신뢰도 측정을 하였다.

  • PDF

Mass Transfer Characteristics of the Carbon Dioxide-Water Slug Flow in Vertical Small-Bore Tubes (작은 직경의 수직관을 흐르는 이산화탄소-물 슬러그 유동의 물질전달 특성)

  • Lee, Kyung-Jae;Kim, Dong-Seon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.5
    • /
    • pp.401-408
    • /
    • 2012
  • Volumetric mass transfer coefficient was measured with carbon dioxide and deionized water for the gas-liquid cocurrent slug flow in 2, 5 and 8 mm tubes. Measurement was repeated with and without a vertical section in an experimental setup and entrance effect was found greater for smaller tubes. Volumetric mass transfer coefficient in the vertical section was found generally a strong function of gas- and liquid-phase superficial velocities. 5 mm- and 8 mm-tube data are highly consistent each other but not with 2 mm tube.