DOI QR코드

DOI QR Code

Analytical trends in mass spectrometry based metabolomics approaches of neurochemicals for diagnosis of neurodegenerative disorders

퇴행성신경질환의 진단을 위한 신경전달물질 대사체의 질량 분석법 동향

  • Received : 2017.10.14
  • Accepted : 2017.12.09
  • Published : 2017.12.25

Abstract

Because neurochemicals are related to homeostasis and cognitive and behavioral functions in human body and because they enable the diagnosis of numerous neurodegenerative disorders, there has been increasing interest in the development of analytical platforms for neurochemical profiling in biological samples. In particular, mass spectrometry (MS)-based analytical methods combined with chromatographic separation have been widely used to profile neurochemicals in metabolic pathways. However, development of delicate sample preparation procedures and highly sensitive instrumental detection is necessary considering the trace levels and chemical instabilities of neurochemicals in biological samples. Therefore, in this review, analytical trends in MS-based metabolomics approaches to neurochemicals in multiple biological samples, such as urine, blood, CSF, and biological tissues, are discussed. This paper is expected to contribute to the development of an analytical platform to discover biomarkers that will aid diagnosis, prognosis, and treatment of neurodegenerative disorders.

신경전달물질(neurochemicals)은 인체 내의 항상성유지와 인지 및 행동기능에 관여하므로 수많은 퇴행성신경질환 진단에 활용할 수 있어 생물학적 시료 내에서 신경화학물질을 프로파일링할 수 있는 분석플랫폼 개발에 대한 관심이 증가하고 있다. 특히, 크로마토그래피 분리법과 결합된 질량분석법 기반의 분석법은 대사경로 내의 신경전달물질을 프로파일링하는 데 널리 사용되어 오고 있다. 하지만 생물학적 시료내 신경전달물질은 극미량으로 존재하며 화학적으로 불안정한 특징이 있어 정교한 시료전처리 과정과 고감도의 기기분석법의 개발이 수반되어야 한다. 따라서 본 총설 논문에서는 소변, 혈액, 뇌척수액과 생체조직과 같은 다양한 생물학적 시료에서 신경전달물질에 대한 질량분석법 기반의 대사체학 접근법의 분석 연구 경향에 대해서 논의할 예정이다. 이 논문은 향후 퇴행성신경질환의 진단, 예후예측과 치료를 가능하게 하는 생체지표물질을 발굴을 위한 분석플랫폼 개발에 기여할 것으로 기대된다.

Keywords

References

  1. T. Opladen, E. Cortes-Saladelafont, M. Mastrangelo, G. Horvath, R. Pons, E. Lopez-Laso, J. A. Fernandez-Ramos, T. Honzik, T. Pearson, J. Friedman, S. Scholl-Burgi, T. Wassenberg, S. Jung-Klawitter, O. Kuseyri, K. Jeltsch, M. A. Kurian and A. Garcia-Cazorla, Mol. Genet. Metab. Reports, 9, 61-66 (2016). https://doi.org/10.1016/j.ymgmr.2016.09.006
  2. T. Lapainis and J. V. Sweedler, J. Chromatogr. A, 1184, 144-158 (2008). https://doi.org/10.1016/j.chroma.2007.10.098
  3. Oliver von Bohle und Halbach and Rolf Dermietzel, Wiley-VCH, Handbook of Receptors and Biological Effects, 2006.
  4. R. Adolfsson, C. G. Gottfries, B. E. Roos and B. Winblad, Br. J. Psychiatry., 135, 216-223 (1979). https://doi.org/10.1192/bjp.135.3.216
  5. L. F. Nolden, T. Tartavoulle and D. J. Porche, J. Nurse Pract., 10, 500-506 (2014). https://doi.org/10.1016/j.nurpra.2014.04.019
  6. E. Sanchez-Lopez, C. Montealegre, A. L. Crego and M. L. Marina, TrAC - Trends Anal. Chem., 67, 82-99 (2015). https://doi.org/10.1016/j.trac.2014.12.008
  7. L. H. Rodan, K. M. Gibson and P. L. Pearl, Pediatr. Neurol., 53, 277-286 (2015). https://doi.org/10.1016/j.pediatrneurol.2015.04.016
  8. J. Soleymani, TrAC - Trends Anal. Chem., 72, 27-44 (2015). https://doi.org/10.1016/j.trac.2015.03.017
  9. I. A. Veselova, E. A. Sergeeva, M. I. Makedonskaya, O. E. Eremina, S. N. Kalmykov and T. N. Shekhovtsova, J. Anal. Chem., 71, 1155-1168 (2016). https://doi.org/10.1134/S1061934816120108
  10. D. Kondziella, Neurochem. Res., 42, 1767-1771 (2017). https://doi.org/10.1007/s11064-016-2101-z
  11. C. Marecos, J. Ng and M.A. Kurian, J. Inherit. Metab. Dis., 37, 619-626 (2014). https://doi.org/10.1007/s10545-014-9697-4
  12. W. T. Kassahun, Vascular., 23, 297-304 (2015). https://doi.org/10.1177/1708538114543845
  13. Y. Shen, J. Lu, Q. Tang, Q. Guan, Z. Sun, H. Li and L. Cheng, Rapid, J. Chromatogr. B, 1002, 92-97 (2015). https://doi.org/10.1016/j.jchromb.2015.08.013
  14. R. NAE, R. MG and T. JM, JCAR., 33, 53-55 (1982).
  15. T. E. Dicke, M. L. Henry and J. P. Minton, J. Surg. Oncol., 34, 160-164 (1987). https://doi.org/10.1002/jso.2930340305
  16. Z. Wang, Q. Liang, Y. Wang and G. Luo, J. Electroanal. Chem., 540, 129-134 (2003). https://doi.org/10.1016/S0022-0728(02)01300-1
  17. J.-M. Zen, I.-L. Chen and Y. Shih, Anal. Chim. Acta, 369, 103-108 (1998). https://doi.org/10.1016/S0003-2670(98)00232-3
  18. G. Curzon and A.R. Green, Br. J. Pharmacol., 37, 689-697 (1969). https://doi.org/10.1111/j.1476-5381.1969.tb08507.x
  19. W. Wesemann, C. Grote, H. Clement, F. Block and K. Sontag, Prog. Neuropsychopharmacol. Biol. Psychiatry., 17, 487-499 (1993). https://doi.org/10.1016/0278-5846(93)90081-3
  20. M. Karobath, J.-L. Diaz and M. O. Huttunen, Eur. J. Pharmacol., 14, 393-396 (1971). https://doi.org/10.1016/0014-2999(71)90195-6
  21. M. Karobath, Biochem. Pharmacol., 21, 1253-1263 (1972). https://doi.org/10.1016/0006-2952(72)90287-0
  22. M. Hasanzadeh, N. Shadjou and E. Omidinia, J. Neurosci. Methods, 219, 52-60 (2013). https://doi.org/10.1016/j.jneumeth.2013.07.007
  23. K. ER, S. JH and J. TM, Principles of Neural Science, 2000.
  24. R. Rodriguez-Diaz, R. Dando, M. C. Jacques-Silva, A. Fachado, J. Molina, M. H. Abdulreda, C. Ricordi, S. D. Roper, P.-O. Berggren and A. Caicedo, Nat. Med., 17, 888-892 (2011). https://doi.org/10.1038/nm.2371
  25. I. Wessler, C. J. Kirkpatrick and K. Racke, Pharmacol. Ther., 77, 59-79 (1998). https://doi.org/10.1016/S0163-7258(97)00085-5
  26. M. B. Bhuiyan, F. Murad and M. E. Fant, Cell Commun. Signal., 4, 1-7 (2006). https://doi.org/10.1186/1478-811X-4-1
  27. K. Ofek and H. Soreq, Chem. Biol. Interact., 203, 113-119 (2013). https://doi.org/10.1016/j.cbi.2012.07.007
  28. S. Shenhar-Tsarfaty, S. Berliner, N. M. Bornstein and H. Soreq, J. Mol. Neurosci., 53, 298-305 (2014). https://doi.org/10.1007/s12031-013-0176-4
  29. J. Bergquist, A. Sciubisz, A. Kaczor and J. Silberring, J. Neurosci. Methods, 113, 1-13 (2002). https://doi.org/10.1016/S0165-0270(01)00502-7
  30. M. A. Raggi, C. Sabbioni, G. Nicoletta, R. Mandrioli and G. Gerra, J. Sep. Sci., 26, 1141-1146 (2003). https://doi.org/10.1002/jssc.200301486
  31. M. Tsunoda, C. Aoyama, H. Nomura, T. Toyoda, N. Matsuki and T. Funatsu, J. Pharm. Biomed. Anal., 51, 712-715 (2010). https://doi.org/10.1016/j.jpba.2009.09.045
  32. M.-J. Kim, B.-K. Kim, S. M. Kim, J.-S. Park and J. Hong, Anal. Sci. Technol., 24(5), 319-335 (2011). https://doi.org/10.5806/AST.2011.24.5.319
  33. I. Marin-Valencia, M. Serrano, A. Ormazabal, B. Perez-Dueñas, A. Garcia-Cazorla, J. Campistol and R. Artuch, Clin. Biochem., 41, 1306-1315 (2008). https://doi.org/10.1016/j.clinbiochem.2008.08.077
  34. M. Yoshitake, H. Nohta, H. Yoshida, T. Yoshitake, K. Todoroki and M. Yamaguchi, Anal. Chem., 78, 920-927 (2006). https://doi.org/10.1021/ac051414j
  35. M. A. Fotopoulou and P. C. Ioannou, Anal. Chim. Acta, 462, 179-185 (2002). https://doi.org/10.1016/S0003-2670(02)00312-4
  36. T. G. Rosano, T. A. Swift and L. W. Hayes, Clin. Chem., 37, 1854-1867 (1991).
  37. J. Bicker, A. Fortuna, G. Alves and A. Falcao, Anal. Chim. Acta, 768, 12-34 (2013). https://doi.org/10.1016/j.aca.2012.12.030
  38. H. W. Nam, S.-J. Park, H. S. Pyo and K. J. Paeng, Anal. Sci. Technol., 16(5), 349-357 (2003).
  39. P.-T. Linh, S.-C. Lee, Y.-H. Kim, S.-P. Hong, C.-W. Song and J.-S. Kang, Anal. Sci. Technol., 13(5), 630-635 (2000).
  40. K. Vuorensola and H. Siren, J. Chromatogr. A, 895, 317-327 (2000). https://doi.org/10.1016/S0021-9673(00)00528-8
  41. R. T. Peaston and C. Weinkove, Ann. Clin. Biochem., 41, 17-38 (2004). https://doi.org/10.1258/000456304322664663
  42. K. Vuorensola, J. Kokkonen, H. Siren and R. A. Ketola, Electrophoresis, 22, 4347-4354 (2001). https://doi.org/10.1002/1522-2683(200112)22:20<4347::AID-ELPS4347>3.0.CO;2-J
  43. M. Coen, E. Holmes, J. C. Lindon and J. K. Nicholson, Chem. Res. Toxicol., 21, 9-27 (2008). https://doi.org/10.1021/tx700335d
  44. O. Beckonert, H. C. Keun, T. M. D. Ebbels, J. Bundy, E. Holmes, J. C. Lindon and J. K. Nicholson, Nat. Protoc., 2, 2692-2703 (2007). https://doi.org/10.1038/nprot.2007.376
  45. T. M. Tsang, B. Woodman, G. A. Mcloughlin, J. L. Griffin, S. J. Tabrizi, G. P. Bates and E. Holmes, J. Proteome Res., 5, 483-492 (2006). https://doi.org/10.1021/pr050244o
  46. M. R. Viant, B. G. Lyeth, M. G. Miller and R. F. Berman, NMR Biomed., 18, 507-516 (2005). https://doi.org/10.1002/nbm.980
  47. E. Holmes, T. M. Tsang, J. T. J. Huang, F. M. Leweke, D. Koethe, C. W. Gerth, B. M. Nolden, S. Gross, D. Schreiber, J. K. Nicholson and S. Bahn, PLoS Med., 3, 1420-1428 (2006).
  48. M. P. Quinones and R. Kaddurah-Daouk, Neurobiol. Dis., 35, 165-176 (2009). https://doi.org/10.1016/j.nbd.2009.02.019
  49. K. Dettmer, P. A. Aronov and B. D. Hammock, Mass Spectrom. Rewiews, 26, 51-78 (2007). https://doi.org/10.1002/mas.20108
  50. M. E. Dumas and L. Davidovic, J. Neuroimmune Pharmacol., 10, 402-424 (2015). https://doi.org/10.1007/s11481-014-9578-5
  51. J.-L. Wolfender, G. Marti, A. Thomas and S. Bertrand, J. Chromatogr. A, 1382, 136-164 (2015). https://doi.org/10.1016/j.chroma.2014.10.091
  52. B. Peng, H. Li and X. X. Peng, Protein Cell, 6, 628-637 (2015). https://doi.org/10.1007/s13238-015-0185-x
  53. M. J. Nunes de Paiva, H. C. Menezes and Z. de Lourdes Cardeal, Analyst, 139, 3683-3694 (2014). https://doi.org/10.1039/C4AN00583J
  54. C. Silva, C. Cavaco, R. Perestrelo, J. Pereira and J. S. Camara, Metabolites, 4, 71-97 (2014). https://doi.org/10.3390/metabo4010071
  55. H. Xing, K. Zhang, R. Zhang, Y. Zhang, L. Gu, H. Shi, K. Bi and X. Chen, J. Chromatogr. B, 988, 135-142 (2015). https://doi.org/10.1016/j.jchromb.2015.02.037
  56. L. Zhao, S. Zheng, G. Su, X. Lu, J. Yang, Z. Xiong and C. Wu, J. Chromatogr. B, 988, 59-65 (2015). https://doi.org/10.1016/j.jchromb.2015.02.029
  57. J. Marcos, N. Renau, O. Valverde, G. Aznar-Lain, I. Gracia-Rubio, M. Gonzalez-Sepulveda, L. A. Perez-Jurado, R. Ventura, J. Segura and O. J. Pozo, J. Chromatogr. A, 1434, 91-101 (2016). https://doi.org/10.1016/j.chroma.2016.01.023
  58. J.-M. T. Wong, P. A. Malec, O. S. Mabrouk, J. Ro, M. Dus and R. T. Kennedy, J. Chromatogr. A, 1446, 78-90 (2016). https://doi.org/10.1016/j.chroma.2016.04.006
  59. J. Chen, W. Hou, B. Han, G. Liu, J. Gong, Y. Li, D. Zhong, Q. Liao and Z. Xie, Anal. Bioanal. Chem., 408, 2527-2542 (2016). https://doi.org/10.1007/s00216-016-9352-z
  60. F. Gosetti, E. Mazzucco, M. C. Gennaro and E. Marengo, Anal. Bioanal. Chem., 405, 907-916 (2013). https://doi.org/10.1007/s00216-012-6269-z
  61. K. Sadilkova, K. Dugaw, D. Benjamin and R. M. Jack, Clin. Chim. Acta, 424, 253-257 (2013). https://doi.org/10.1016/j.cca.2013.06.024
  62. P. Husek, Z. Svagera, D. Hanzlikova, L. Oimnaeova, H. Zahradniekova, I. Opekarova and P. Simek, J. Chromatogr. A, 1443, 211-232 (2016). https://doi.org/10.1016/j.chroma.2016.03.019
  63. S. Tufi, M. Lamoree, J. de Boer and P. Leonards, J. Chromatogr. A, 1395, 79-87 (2015). https://doi.org/10.1016/j.chroma.2015.03.056
  64. Y. He, X.-E. Zhao, S. Zhu, N. Wei, J. Sun, Y. Zhou, S. Liu, Z. Liu, G. Chen, Y. Suo and J. You, J. Chromatogr. A, 1458, 70-81 (2016). https://doi.org/10.1016/j.chroma.2016.06.059
  65. L. Zheng, X.-E. Zhao, S. Zhu, Y. Tao, W. Ji, Y. Geng, X. Wang, G. Chen and J. You, J. Chromatogr. B, 1054, 64-72 (2017). https://doi.org/10.1016/j.jchromb.2017.03.039
  66. X.-E. Zhao, Y. He, M. Li, G. Chen, N. Wei, X. Wang, J. Sun, S. Zhu and J. You, J. Pharm. Biomed. Anal., 135, 186-198 (2017). https://doi.org/10.1016/j.jpba.2016.11.056
  67. X. Yang, Y. Hu, G. Li, and Z. Zhang, J. Sep. Sci., 8, 1380-1387 (2015).
  68. H. He, E. Carballo-Jane, X. Tong and L. H. Cohen, J. Chromatogr. B, 997, 154-161 (2015). https://doi.org/10.1016/j.jchromb.2015.05.014
  69. N. Tohmola, O. Itkonen, U. Turpeinen, S. Joenvaara, R. Renkonen and E. Hamalainen, Clin. Chim. Acta, 446, 206-212 (2015). https://doi.org/10.1016/j.cca.2015.03.041
  70. X. Li, S. Li, P. Wynveen, K. Mork and G. Kellermann, Anal. Bioanal. Chem., 406, 7287-7297 (2014). https://doi.org/10.1007/s00216-014-8120-1
  71. F. Schumacher, S. Chakraborty, B. Kleuser, E. Gulbins, T. Schwerdtle, M. Aschner and J. Bornhorst, Talanta, 144, 71-79 (2015). https://doi.org/10.1016/j.talanta.2015.05.057
  72. L. Hao, X. Zhong, T. Greer, H. Ye and L. Li, Analyst, 140, 467-475 (2015). https://doi.org/10.1039/C4AN01582G
  73. W. Y. Hsu, C. M. Chen, F. J. Tsai and C. C. Lai, Clin. Chim. Acta, 420, 140-145 (2013). https://doi.org/10.1016/j.cca.2012.10.022
  74. N. H. Park, J. Y. Hong, H. J. Shin and J. Hong, J. Chromatogr. A, 1305, 234-243 (2013). https://doi.org/10.1016/j.chroma.2013.07.003
  75. H. J. Shin, N. H. Park, W. Lee, M. H. Choi, B. C. Chung and J. Hong, J. Chromatogr. B, 1051, 97-107 (2017). https://doi.org/10.1016/j.jchromb.2017.03.015
  76. H. Lu, J. Yu, J. Wang, L. Wu, H. Xiao and R. Gao, J. Pharm. Biomed. Anal., 122, 42-51 (2016). https://doi.org/10.1016/j.jpba.2016.01.031
  77. H. I. Woo, J. S. Yang, H. J. Oh, Y. Y. Cho, J. H. Kim, H.-D. Park and S.-Y. Lee, Clin. Biochem., 49, 573-579 (2016). https://doi.org/10.1016/j.clinbiochem.2016.01.010
  78. M. Monteleone, A. Naccarato, G. Sindona and A. Tagarelli, Anal. Chim. Acta, 759, 66-73 (2013). https://doi.org/10.1016/j.aca.2012.11.017
  79. D. S. Domingues, E. J. Crevelin, L. A. B. De Moraes, J. E. C. Hallak, J. A. De Souza Crippa and M. E. C. Queiroz, J. Sep. Sci., 38, 780-787 (2015). https://doi.org/10.1002/jssc.201400943
  80. Q. Liang, H. Liu, T. Zhang, Y. Jiang, H. Xing and A. Zhang, RSC Adv., 6, 3586-3591 (2016). https://doi.org/10.1039/C5RA19349D
  81. X.-J. Zhai, F. Chen, C. R. Zhu and Y.-N. Lu, Biomed. Chromatogr., 29, 1737-1743 (2015). https://doi.org/10.1002/bmc.3487
  82. C. Lv, Q. Li, X. Liu, B. He, Z. Sui, H. Xu, Y. Yin, R. Liu and K. Bi, J. Mass Spectrom., 50, 354-363 (2015). https://doi.org/10.1002/jms.3536
  83. J. Bicker, A. Fortuna, G. Alves and A. Falcao, Anal. Chim. Acta, 768, 12-34 (2013). https://doi.org/10.1016/j.aca.2012.12.030
  84. L. Brunelli, G. Ristagno, R. Bagnati, F. Fumagalli, R. Latini, R. Fanelli and R. Pastorelli, Metabolomics, 9, 839-852 (2013). https://doi.org/10.1007/s11306-013-0506-0
  85. X. Han, M. Min, J. Wang, Z. Bao, H. Fan, X. Li, T.I. Adelusi, X. Zhou and X. Yin, J. Neurosci. Res., (2017), DOI: 10.1002/jnr.24098.
  86. L. Konieczna, A. Roszkowska, A. Synakiewicz, T. Stachowicz-Stencel, E. Adamkiewicz-Drozynska and T. Baczek, Talanta, 150, 331-339 (2016). https://doi.org/10.1016/j.talanta.2015.12.056
  87. M. M. Moein, A. Abdel-Rehim and M. Abdel-Rehim, TrAC - Trends Anal. Chem., 67, 34-44 (2015). https://doi.org/10.1016/j.trac.2014.12.003
  88. M. M. Khamis, D. J. Adamko and A. El-Aneed, Mass Spectrom. Reviews, 36, 115-134 (2017). https://doi.org/10.1002/mas.21455
  89. D. T. Nguyen, I. S. Cho, J. W. Kim, K. R. Kim, G. Lee and M. J. Paik, Biomed. Chromatogr., 27, 216-221 (2013). https://doi.org/10.1002/bmc.2778
  90. L. Konieczna, A. Roszkowska, M. Niedwiecki and T. Baczek, J. Chromatogr. A, 1431, 111-121 (2016). https://doi.org/10.1016/j.chroma.2015.12.062
  91. B. Hashemi, P. Zohrabi, K.-H. Kim, M. Shamsipur, A. Deep and J. Hong, TrAC - Trends Anal. Chem., 97, 83-95 (2017). https://doi.org/10.1016/j.trac.2017.08.014
  92. I. Moreno, M. Barroso, A. Martinho, A. Cruz and E. Gallardo, J. Chromatogr. B, 1004, 67-78 (2015). https://doi.org/10.1016/j.jchromb.2015.09.032
  93. T. Rosenling, M. P. Stoop, A. Smolinska, B. Muilwijk, L. Coulier, S. Shi, A. Dane, C. Christin, F. Suits, P.L. Horvatovich, S. S. Wijmenga, L. M. C. Buydens, R. Vreeken, T. Hankemeier, A. J. Van Gool, T. M. Luider and R. Bischoff, Clin. Chem., 57, 1703-1711 (2011). https://doi.org/10.1373/clinchem.2011.167601
  94. J. M. T. Wong, P. A. Malec, O. S. Mabrouk, J. Ro, M. Dus and R. T. Kennedy, J. Chromatogr. A, 1446, 78-90 (2016). https://doi.org/10.1016/j.chroma.2016.04.006
  95. L.-H. Zhang, H.-L. Cai, P. Jiang, H.-D. Li, L.-J. Cao, R.-L. Dang, W.-Y. Zhu and Y. Deng, Anal. Methods, 7, 3929-3938 (2015). https://doi.org/10.1039/C5AY00308C
  96. A. Wojnicz, J. Avendano Ortiz, A. I. Casas, A.E. Freitas, M. G. Lopez and A. Ruiz-Nuno, Clin. Chim. Acta, 453, 174-181 (2016). https://doi.org/10.1016/j.cca.2015.12.023
  97. W. Zhou, B. Zhu, F. Liu, C. Lyu, S. Zhang, C. Yan, Y. Cheng and H. Wei, J. Chromatogr. B, 1002, 379-386 (2015). https://doi.org/10.1016/j.jchromb.2015.08.042
  98. K. Inoue, Y. Miyazaki, K. Unno, J. Z. Min, K. Todoroki and T. Toyo'oka, Biomed. Chromatogr., 30, 55-61 (2016). https://doi.org/10.1002/bmc.3502
  99. M. S. S. Bergh, I. L. Bogen, E. Lundanes and A. M. L. Oiestad, J. Chromatogr. B, 1028, 120-129 (2016). https://doi.org/10.1016/j.jchromb.2016.06.011
  100. F. Kondo, M. Tachi, M. Gosho, M. Fukayama, K. Yoshikawa and S. Okada, Anal. Bioanal. Chem., 407, 5261-5272 (2015). https://doi.org/10.1007/s00216-015-8496-6
  101. S. Greco, W. Danysz, A. Zivkovic, R. Gross and H. Stark, Anal. Chim. Acta, 771, 65-72 (2013). https://doi.org/10.1016/j.aca.2013.02.004
  102. P. Voehringer, R. Fuertig and B. Ferger, J. Chromatogr. B, 939, 92-97 (2013). https://doi.org/10.1016/j.jchromb.2013.09.011
  103. X.-E. Zhao, Y. He, P. Yan, N. Wei, R. Wang, J. Sun, L. Zheng, S. Zhu and J. You, RSC Adv., 6, 108635-108644 (2016). https://doi.org/10.1039/C6RA23808D
  104. A. Gottas, A. Ripel, F. Boix, V. Vindenes, J. Morland and E. L. Oiestad, J. Pharmacol. Toxicol. Methods, 74, 75-79 (2015). https://doi.org/10.1016/j.vascn.2015.06.002
  105. R. Nirogi, P. Komarneni, V. Kandikere, R. Boggavarapu, G. Bhyrapuneni, V. Benade and S. Gorentla, J. Chromatogr. B, 913-914, 41-47 (2013). https://doi.org/10.1016/j.jchromb.2012.09.034
  106. X. S. Li, S. Li and G. Kellermann, J. Chromatogr. A, 1449, 54-61 (2016). https://doi.org/10.1016/j.chroma.2016.04.039
  107. T. M. Fonseka, X.-Y. Wen, J. A. Foster and S. H. Kennedy, J. Neurosci. Res., 94, 3-14 (2016). https://doi.org/10.1002/jnr.23639
  108. A. Aragon, J. Legradi, A. Ballesteros-Gomez, J. Legler, M. van Velzen, J. de Boer and P. Leonards, Anal. Bioanal. Chem., 409, 2931-2939 (2017). https://doi.org/10.1007/s00216-017-0239-4
  109. S. Lista, H. Zetterberg, B. Dubois, K. Blennow and H. Hampel, J. Neurol., 261, 1234-1243 (2014). https://doi.org/10.1007/s00415-014-7366-z
  110. R. Gonzalez-Dominguez, A. Sayago and A. Fernandez-Recamales, J. Chromatogr. B, (2017) DOI: 10.1016/j.jchromb.2017.02.008.
  111. M. M. Koek, R. H. Jellema, van der J. Greef, A.C. Tas and T. Hankemeier, Metabolomics, 7, 307-328 (2011). https://doi.org/10.1007/s11306-010-0254-3
  112. K. K. Pasikanti, P. C. Ho and E. C. Y. Chan, J. Chromatogr. B, 871, 202-211 (2008). https://doi.org/10.1016/j.jchromb.2008.04.033
  113. P. S imek, P. Hus k and H. Zahradniekova, Anal. Chem., 80, 5776-5782 (2008). https://doi.org/10.1021/ac8003506
  114. N. A. Alterman and P. Hutzinger, In 'Amino acid handbook', Chapter 13, Springer, New York, 2012.
  115. M.-J. Paik, D.-T. Nguyen, J. Yoon, H. S. Chae, K.-R. Kim, G. Lee and P. C. Lee, Bull. Korean Chem. Soc., 32, 2418-2422 (2011). https://doi.org/10.5012/bkcs.2011.32.7.2418
  116. K.-R. Kim, H.-G. Park, M.-J. Paik, H.-S. Ryu, K.S. Oh, S.-W. Myung and H. M. Liebich, J. Chromatogr. B., 712, 11-22 (1998). https://doi.org/10.1016/S0378-4347(98)00155-8
  117. M.-J. Paik, E.-Y. Cho, H. Kim, K.-R. Kim, S. Choi, Y.-H. Ahn and G. Lee, Biomed. Chromatogr., 22, 450-453 (2008). https://doi.org/10.1002/bmc.966
  118. M.-J. Paik, H.-J. Lee and K.-R. Kim, J. Chromatogr. B, 821, 94-104 (2005). https://doi.org/10.1016/j.jchromb.2005.04.011
  119. M.-J. Paik and K.-R. Kim, J. Chromatogr. A, 1034, 13-23 (2004). https://doi.org/10.1016/j.chroma.2004.02.032
  120. S. T. Kadam and S. S. Kim, J. Organomet. Chem., 694, 2562-2566 (2009). https://doi.org/10.1016/j.jorganchem.2009.04.001
  121. M. Sano, V. Ferchaud-Roucher, C. Nael, A. Aguesse, G. Poupeau, B. Castellano and D. Darmaun, J. Mass Spectrom., 49, 128-135 (2014). https://doi.org/10.1002/jms.3313
  122. O. Midttun, G. Kvalheim and P. M. Ueland, Anal. Bioanal. Chem., 405, 2009-2017 (2013). https://doi.org/10.1007/s00216-012-6602-6
  123. W. Lee, N. H. Park, T.-B. Ahn, B. C. Chung and J. Hong, J. Chromatogr. A, (2017), DOI: 10.1016/j.chroma.2017.10.021.
  124. S. Jiang, Z. Liang, L. Hao and L. Li, Electrophoresis, 37, 1031-1038 (2016). https://doi.org/10.1002/elps.201500497
  125. H. Chu, A. Zhang, Y. Han, S. Lu, L. Kong, J. Han, Z. Liu, H. Sun and X. Wang, J. Chromatogr. B, 1015-1016, 50061 (2016).