• Title/Summary/Keyword: 무회분 석탄

Search Result 10, Processing Time 0.019 seconds

Optimization of Operating Condition on Gasification of Ash-free Coal by Using the Sensitivity Analysis of ASPEN Plus (민감도 해석을 통한 무회분 석탄의 가스화 최적 운전조건 도출)

  • Park, Sung-Ho;Jeon, Dong-Hwan;Yun, Sung-Phil;Chung, Seok-Woo;Choi, Ho-Kyung;Lee, Si-Hyun
    • Clean Technology
    • /
    • v.20 no.3
    • /
    • pp.298-305
    • /
    • 2014
  • Ash included in coal can cause environmental pollution and it can decrease efficiency of mass and heat transfer by getting scorched and stick in the facilities operated at high temperature. To solve this problem, a feasibility study on pulverized coal fired power plant and integrated gasification combined cycle (IGCC) using the AFC (Ash-Free Coal) as well as the development to remove the ash from the coal was conducted. In this research, optimization of operating condition was proposed by using sensitivity analysis of ASPEN $Plus^{(R)}$ to apply the coal containing under the 200 ppm ash for integrated gasification combined cycle. Particularly, the coal gasification process was classified as three parts : pyrolysis process, volatile matter combustion process and char gasification process. The dimension and operating condition of 1.5 ton/day class non-slagging gasifier are reflected in the coal gasification process model.

Physical and Chemical characteristics of Cokes Using Ash-Free Coal as binder (무회분 석탄(AFC)을 바인더로 이용한 코크스의 물리적 및 화학적 특성)

  • Kim, Gyeong Min;Kim, Jin Ho;Lisandy, Kevin Yohanes;Kim, Gyu Bo;Choi, Ho Kyung;Jeon, Chung Hwan
    • Korean Chemical Engineering Research
    • /
    • v.55 no.3
    • /
    • pp.395-400
    • /
    • 2017
  • Coke strength was increased by adding ash-free coal (AFC) binder. In this study, the effect of the AFC binder on the physical and chemical properties of coke was experimentally investigated to understand the molecular mechanism for the improved coke strength. For reduced $CO_2$ emission in steelmaking industry, torrefied biomass fuel mixed with coal binder is also considered. The interface between the base coal and AFC was thus examined using Scanning Electron Microscope (SEM). The coke strength was commonly measured by performing the indirect tensile test and Nuclear Magnetic Resonance (NMR) spectroscopy in $^1H$ and $^{13}C$ modes. For comprehensive mechanism study of the enhanced coke strength thus obtained, ordinary coal for thermal power plant use was carbonized with AFC for subsequent SEM examination. The NMR spectroscopy results of coke samples positively revealed that the tensile strength was proportional to the average number of aromatic rings.

Comparative Studies on K2CO3-based Catalytic Gasification of Samhwa Raw Coal and Its Ash-free Coal (삼화 원탄과 무회분탄의 촉매(K2CO3) 가스화 반응성 비교 연구)

  • Kong, Yongjin;Lim, Junghwan;Rhim, Youngjoon;Chun, Donghyuk;Lee, Sihyun;Yoo, Jiho;Rhee, Young-Woo
    • Clean Technology
    • /
    • v.20 no.3
    • /
    • pp.218-225
    • /
    • 2014
  • Catalytic gasification of raw coals at mild condition is not realized yet mainly due to deactivation of catalysts via their irreversible interaction with mineral matters in coal. In this work, the gasification behavior of ash-free coal (AFC) was compared with that of the parent raw coal. In order to modify the gasification conditions, the raw coal gasified with fixed variables (water supply, space velocity, temperature, catalysts) in a fixed bed reactor. When catalysts are added by physical mixing method with coal, $K_2CO_3$ was the most effective additives for steam gasification of coal. However, the activity of ash-free coal (AFC) was much less reactive than raw coal due to high temperature extraction in a 1-methylnaphthalene under 30bar at $370^{\circ}C$ for 1 h, almost removed oxygen functional groups, and increased carbonization. The addition of $K_2CO_3$ in AFC achieved higher conversion rate at low temperature ($700^{\circ}C$). At that time, the molar ratio of gases ($H_2/CO$ and $CO_2/CO$) was increased because of water-gas shift reaction (WGSR) by addition of catalysts. This shows that catalytic steam gasification of AFCs is achievable for economic improvement of gasification process at mild temperature.

Preliminary Study on Precombustion Cleaning for Coal-fired Utility Plants (발전용 석탄의 연소전 탈황탈회 처리시스템 설계를 위한 기초연구)

  • 최우진;정진도;지평삼
    • Journal of Energy Engineering
    • /
    • v.4 no.1
    • /
    • pp.5-12
    • /
    • 1995
  • 본 연구에서는 자력 및 정전기 선별법에 의한 발전용 석탄의 연소전 탈황탈회 가능성 조사를 미국 PETC와 공동으로 수행하였다. 정전기 선별법에 의한 석탄의 탈황실험은 국내무연탄 및 미국 유연탄 시료를 대상으로 수행하였으며, 본 선별법은 석탄으로부터 유황을 함유하는 광물은 물론 회분을 제거하는데 매우 효율적임을 확인하였다. 또한 본 연구에서는 고강도 자력선별기를 이용하여 국내무연탄에 대한 건식자력선별 가능성을 검토하였다. 삼척 및 동원탄광 시료에 대한 입도별 2단계 선별실험을 수행하였으며, 본 실험 결과 동원탄광 시료가 삼척탄광 시료보다 회분제거가 용이하였으며 유황분의 경우는 두 시료 모두 40∼50% 제거가 가능하였다. 기초실험을 통하여 향후 발전용 석탄의 연소전 탈황탈회처리시스템 개발에 필요한 기초자료를 제시하였다.

  • PDF

Comparative Characterization of AFC Precipitated Using Vacuum Drying, Dilution Precipitation and Spray Drying (감압건조, 희석침전, 분무건조 방식으로 제조된 무회분석탄의 특성)

  • Kwon, Ho Jung;Choi, Ho Kyung;Jo, Wan Taek;Kim, Sang Do;Yoo, Ji Ho;Chun, Dong Hyuk;Rhim, Young Joon;Lim, Jeong Hwan;Lee, Si Hyun;Rhee, Young Woo
    • Korean Chemical Engineering Research
    • /
    • v.54 no.2
    • /
    • pp.234-238
    • /
    • 2016
  • Solid ash-free coal (AFC) samples recovered from solvent-extracted solution by vacuum drying, dilution precipitation and spray drying methods were compared in terms of physical properties and chemical structure. AFC was prepared by using Kideco coal (Indonesian sub-bituminous coal) and polar N-methyl-2-pyrrolidone (NMP) solvent as raw materials. The physical properties of the AFCs were characterized with proximate, ultimate, and calorific value analysis. In analyzing the chemical structure, FTIR and NMR were used. the proximate analysis showed much reduced ash in the AFCs compared to parent raw coal. The FTIR result showed that the extraction solvent was not fully removed from the AFC prepared by vacuum drying. However, the solvent was not detected in the AFC recovered by using dilution precipitation. Dilution precipitation has advantages over the other two methods, since it can be done at relatively low temperature and separate ash-free coal from extraction solvent more effectively.

The Study on the Combustion and Ash Deposition Characteristics of Ash Free Coal and Residue Coal in a Drop Tube Furnace (DTF를 이용한 무회분 석탄과 잔탄의 연소 및 회 점착 특성에 관한 연구)

  • Moon, Byeung Ho;Kim, Jin Ho;Sh, Lkhagvadorj;Kim, Gyu Bo;Jeon, Chung Hwan
    • Journal of Energy Engineering
    • /
    • v.24 no.4
    • /
    • pp.89-96
    • /
    • 2015
  • Recently, much research has been put into finding the causes and solutions of slagging/fouling problems that occur at the end of the boiler. This slagging/fouling, caused by low-rank coal's ash, disturbs the thermal power and greatly reduces efficiency. In environmental aspects, such as NOx pollution, governments have been implementing restrictions on the quantity of emission gases that can be released into the atmosphere. To solve these problems, research on Ash Free Coal (AFC), which eliminates ash from low-rank coal, is in progress. AFC has advantages over similar high-rank coals because it increases the heating value of the low grade coal, reduces the contaminants that are emitted, and decreases slagging/fouling problems. In this study, using a DTF, the changes of NOx emissions, unburned carbon, and the characteristics of ash deposition were identified. KCH raw coal, AFC extracted from KCH, residue coal, Glencore, and Mixed Coal (Glencore 85wt% and residue coal 15wt%) were studied. Results showed that AFC had a significantly lower emission of NOx compared to that of the raw coal and residue coal. Also, the residue coal showed a higher reactivity compared to raw coal. And finally, In the case of the residue coal and mixed coal, they showed a lower ash deposition than that of low-rank coal.

The effect of coking property on combustion reactivity of weak caking coals and ash-free coal (점결특성이 무회분탄과 약점결탄의 연소반응성에 미치는 영향)

  • Lee, Soonho;Eom, Soohyun;Kim, Gyubo;Jeon, Chunghwan
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.47-49
    • /
    • 2014
  • 발전소에서 설계 규격을 벗어나는 저등급 석탄을 사용하기 시작하면서, 보일러에서의 연소특성을 예측하기 어려운 다양한 성질의 석탄이 들어오게 되어 각종 연소 문제가 증가하고 있다. 이 중 약 점결 특성을 가지는 저등급 석탄의 사용은 대형 클링커로 인한 보일러 하부의 튜브 손상 사고, 재열증기온도 상승으로 인한 출력감발 등의 문제를 발생시켰다. 또한 현재 개발 중인 무회분석탄 역시 점결 특성을 가지고 있는 것으로 알려져 있어 보일러 내부의 다양한 문제를 일으킬 것으로 예상되고 있다. 발전소에서는 강점결탄 수입 규제를 위해 CSN(Crucible Swelling Number)를 이용하여 제철용으로 사용되는 강점결 석탄의 도입을 규제해왔으나, 발전소 운영에 악 영향을 미치는 약 점결탄에 대한 규제 및 대응으로는 그 효과가 미미한 실정이다. 따라서 본 연구에서는 석탄의 점결 특성 중 팽창 특성을 분석할 수 있는 Microdilatometer와 TGA를 이용한 연소반응성 분석을 통해 석탄의 점결 특성이 연소반응성에 미치는 영향을 분석하였다.

  • PDF

An Economic Analysis of Solvent Extraction Process under Mild Condition for Production of Ash-Free Coal (무회분 석탄 생산을 위한 온순조건 용매추출 공정의 경제성 분석)

  • Choi, Ho-Kyung;Kim, Sang-Do;Yoo, Ji-Ho;Chun, Dong-Hyuk;Lim, Jeong-Hwan;Rhim, Young-Joon;Lee, Si-Hyun
    • Korean Chemical Engineering Research
    • /
    • v.50 no.3
    • /
    • pp.449-454
    • /
    • 2012
  • Economic feasibility of the process for a coal extraction under mild condition, which will produce ash-free coal at a temperature lower than that of coal softening, was analyzed. To this end, the plant of 6000 t/d in capacity was assumed to be constructed near a coal mine in Indonesia, and the IRR, NPV, B/C ratio, and DPP of the plant were calculated based on $96 million investment cost and 15 years service life. The IRR, NPV, B/C ratio, and DPP of the plant were calculated to be 31%, $87 million, 1.08, and 3.9 years, respectively, and which satisfied the evaluation criteria of investment. The economic feasibility of the plant was mainly dependent on the price of the coal initially fed and the residue coal remaining after the extraction, according to sensitivity analysis.

Ultrasonic Effect on the Extraction of Ash-free coal from Low Rank Coal (저등급 석탄으로부터 초청정석탄의 추출과 초음파의 영향)

  • Lee, Sihyun;Kim, Sangdo;Jeong, Soonkwan;Rhim, Youngjun;Kim, Daehun;Woo, Kwangjae
    • Korean Chemical Engineering Research
    • /
    • v.46 no.3
    • /
    • pp.555-560
    • /
    • 2008
  • Extraction was performed to prepare ash-free coal from low rank coal under the temperature of $200-430^{\circ}C$ and initial pressure of 0.1MPa. Three kinds of coal samples with different rank were used and N-methyl-2-pyrrolidinone(NMP, polar), 1-methyl naphthalene(I-MN, non-polar), Light Cycle Oil(LCO, non-polar) were used as solvents. Results showed that higher extraction yield could be obtained with NMP than with 1-MN and LCO, but the ash concentration shows minimun in the case of 1-MN. Three operation modes were compared, that is, idle, agitation and ultrasonic extraction mode. From the results, it was found that the extraction yield and ash concentration were 70.09% and 1.03% under the agitation mode, 80.7% and 0.76% under the ultrasonic operation mode respectively in the case of NMP used at the temperature of $350^{\circ}C$. Similar results were obtained with 1-MN. Effect of ultrasonic on the extraction was estimated as 15-20% increase in the yields and 26% reduction in the ash concentration.

Improved Performance of Direct Carbon Fuel Cell by Catalytic Gasification of Ash-free Coal (무회분탄 연료의 촉매 가스화에 의한 직접탄소연료전지의 성능 향상)

  • Jin, Sunmi;Yoo, Jiho;Rhee, Young Woo;Choi, Hokyung;Lim, Jeonghwan;Lee, Sihyun
    • Clean Technology
    • /
    • v.18 no.4
    • /
    • pp.426-431
    • /
    • 2012
  • Carbon-rich coal can be utilized as a fuel for direct carbon fuel cell (DCFC). However, left-behind ash after the electrochemical oxidation may hinder the electrochemical reactions. In this study, we produced ash-free coal (AFC) by thermal extraction and then tested it as a fuel for DCFC. DCFC was built based on solid oxide electrolyte and the electrochemical performance of AFC mixed with $K_2CO_3$ was compared with AFC only. Significantly enhanced power density was found by catalytic steam gasification of AFC. However, an increase of the power density by catalytic pyrolysis was negligible. This result indicated that a catalyst activated the steam gasification reactions, producing much more $H_2$ and thus increasing the power density, compared to AFC only. Results of a quantitative analysis showed much improved kinetics in AFC with $K_2CO_3$ in agreement with DCFC results. A secondary phase of potassium on yttria-stabilized zirconia (YSZ) surface was observed after the cell operation. This probably caused poor long-term behavior of AFC with $K_2CO_3$. A thin YSZ (30 ${\mu}m$ thick) was found to be higher in the power density than 0.9 mm of YSZ.