DOI QR코드

DOI QR Code

Optimization of Operating Condition on Gasification of Ash-free Coal by Using the Sensitivity Analysis of ASPEN Plus

민감도 해석을 통한 무회분 석탄의 가스화 최적 운전조건 도출

  • 박성호 (고등기술연구원 플랜트 엔지니어링 센터) ;
  • 전동환 (고등기술연구원 플랜트 엔지니어링 센터) ;
  • 윤성필 (고등기술연구원 플랜트 엔지니어링 센터) ;
  • 정석우 (고등기술연구원 플랜트 엔지니어링 센터) ;
  • 최호경 (한국 에너지기술 연구원) ;
  • 이시훈 (한국 에너지기술 연구원)
  • Received : 2014.04.22
  • Accepted : 2014.06.26
  • Published : 2014.09.30

Abstract

Ash included in coal can cause environmental pollution and it can decrease efficiency of mass and heat transfer by getting scorched and stick in the facilities operated at high temperature. To solve this problem, a feasibility study on pulverized coal fired power plant and integrated gasification combined cycle (IGCC) using the AFC (Ash-Free Coal) as well as the development to remove the ash from the coal was conducted. In this research, optimization of operating condition was proposed by using sensitivity analysis of ASPEN $Plus^{(R)}$ to apply the coal containing under the 200 ppm ash for integrated gasification combined cycle. Particularly, the coal gasification process was classified as three parts : pyrolysis process, volatile matter combustion process and char gasification process. The dimension and operating condition of 1.5 ton/day class non-slagging gasifier are reflected in the coal gasification process model.

석탄에 포함되어 있는 회분은 환경오염을 유발시킬 수 있으며, 고온에서 운전되는 발전 설비에 융착되어 열전달 효율을 저하시키는 문제점을 가지고 있다. 이러한 문제를 해결하기 위해서 알칼리나 산, 또는 유기 용매를 이용하여 석탄 내의 회분을 제거하기 위한 연구와 함께 무회분 석탄을 이용한 석탄화력 발전 및 석탄가스화 복합발전에 대한 타당성 연구가 활발히 진행 중이다. 따라서 본 연구에서는 200 ppm급 무회분 석탄을 석탄가스화 발전에 이용하기 위해서 필요한 가스화기 운전조건을 ASPEN $Plus^{(R)}$ 공정모사의 민감도 해석을 바탕으로 도출하였다. 특히 석탄가스화 공정은 열분해, 휘발분 연소, 촤 가스화 공정으로 나누어 해석을 진행하였으며, 1.5 톤일급 비용융(non-slagging) 가스화기의 크기 및 운전 조건을 반영하여 모델링 하였다.

Keywords

References

  1. Stakic, T., Cvetimovic, D., and Skobalj, P., Spasojevic, V., "An Initial Study on Feasible Treatment of Serbian Lignite through Utilization of Low-Rank Coal Upgrading Technologies," Chem. Eng. J, Article in Progress(2014).
  2. Petela, R., "Application of Flow Consecutor for Coal Upgrading," Fuel Process. Technol., 60, 29-48 (1999). https://doi.org/10.1016/S0378-3820(99)00023-5
  3. Sakaguchi, M., Laursen, K., Nakagawa, H., and Miura, K., "Hydrothermal Upgrading of Loy Yang Brown Coal-Effect of Upgrading Conditions on the Characteristics of the Products," Fuel Process. Technol., 89, 391-396 (2008). https://doi.org/10.1016/j.fuproc.2007.11.008
  4. Mahidin, Ogaki, Y., Usui, H., and Okuma, O., "The Advantages of Vacuum-treatment in the Thermal Upgrading of Low-rank Coals on the Improvement of Dewatering and Devolatilization," Fuel Process. Technol., 84, 147-160 (2003). https://doi.org/10.1016/S0378-3820(03)00052-3
  5. Singh, O. K., and KaushiK, S. C., "Energy and Exergy Analysis and Optimization of Kalina Cycle Coupled with a Coal Fired Steam Power Plant," Appl. Therm. Eng., 51, 787-800 (2013). https://doi.org/10.1016/j.applthermaleng.2012.10.006
  6. Tzolakis, G., Papamokolaou, P., Kolokotronis, N., Samaras, N., Tourlidakis, A., and Tomboulides, A., "Simulation of a Coal-fired Power Plant Using Mathematical Programming Algorithms in Order to Optimize Its Efficiency," Appl. Therm. Eng., 48, 256-267 (2012). https://doi.org/10.1016/j.applthermaleng.2012.04.051
  7. Kim, S. H., and Lee, C. G., "A Trend of Producing Technologies of the Ashless Hyper Coal as a Clean Energy Source," J. Energy Eng., 21(4), 325-338(2012). https://doi.org/10.5855/ENERGY.2012.21.4.325
  8. Okuyama, N., Komatsu, N., Shigehisa, T., Kaneko, T., and Tsuruya, S., "Hyper-cal Process to Produce the Ash-free Coal," Fuel Process. Technol., 85, 947-967(2004). https://doi.org/10.1016/j.fuproc.2003.10.019
  9. Takanohashi, T., Shishido, T., Kawashima, H., and Saito, I., "Characterisation of Hypercoals from Coals of Various Ranks," Fuel, 87, 592-598 (2008). https://doi.org/10.1016/j.fuel.2007.02.017
  10. Kopyscinski, J., Rahman, M., Gupta, R., Mims, C. A., and Hill, J. M., "$K_2CO_3$ Catalyzed $CO_2$ Gasification of Ash-free Coal. Interactions of the Catalyst with Carbon in $N_2$ and $CO_2$ Atmosphere," Fuel, 117, 1181-1189 (2014). https://doi.org/10.1016/j.fuel.2013.07.030
  11. Kopyscinski, J., Lam, J., Mims, C. A., and Hill, J. M., "$K_2CO_3$ Catalyzed Steam Gasification of Ash-free Coal. Studying the Effect of Temperature on Carbon Conversion and Gas Production Rate Using a Drop-down Reactor," Fuel, Article in Press (2014).
  12. Kim, J., Choi, H., Lim, J., Rhim, T., Chun, D., Kim, S., Lee, S., and Yoo, J., "Hydrogen Production Via Steam Gasification of Ash Free Coals," Int. J. Hydro. Energy, 38, 6014-6020 (2013). https://doi.org/10.1016/j.ijhydene.2012.12.058
  13. Park, S. K., Jun, Y. S., and Kim, H. T., "A Comparative Study on Catalyst Gasification Reaction Using Lignite and Hyper Coal," Abstract of Korea Society of Energy & Climate Change, pp. 89-93 (2009).
  14. Jin, S. M., Yoo, J. H., Rhee, Y. W., Choi, H. K., Lim, J. H., and Lee, S. H., "Improved Performance of Direct Carbon Fuel Cell by Catalytic Gasification of Ash Free Coal," Clean Technol., 18(4), 426-431 (2012). https://doi.org/10.7464/ksct.2012.18.4.426
  15. "ASPEN Plus Model for Entrained Flow Coal Gasification," ASPEN Technology, Inc(2011).
  16. Suuberg, E. M., Peters, W. A., and Howard, J. B., "Product Composition and Kinetics of Lignite Pyrolysis," J. Chem. Eng, 17, 37-46 (1978).
  17. Wen, C. Y., and Chaung, T. Z., "Entrained Coal Gasification Modeling," Chem. Process., 18, 684-695 (1979).
  18. Wen, C. Y., "Noncatalytic Heterogeneous Solid Fluid Reaction Models," Chem. Eng., 60, 34-54 (1968).

Cited by

  1. Thermo-economic evaluation of 300 MW class integrated gasification combined cycle with ash free coal (AFC) process vol.89, 2015, https://doi.org/10.1016/j.applthermaleng.2015.06.066