• Title/Summary/Keyword: 무한수학

Search Result 108, Processing Time 0.021 seconds

불교의 연기론에 의한 수학적 무한에 관한 고찰

  • 이승우
    • Journal for History of Mathematics
    • /
    • v.15 no.2
    • /
    • pp.77-82
    • /
    • 2002
  • This paper is concerned with the mathematical concept displayed in Buddhism, which is reasonable enough to consider as a philosophy and encompasses the concept of infinity as scientific as that of mathematics. The purpose of this paper is to examine the changing process of the Buddhism concept of infinity on the basis of time sequence and to combine this with that of mathematics.

  • PDF

A Study on understanding of infinite decimal (무한소수에 대한 학생들의 이해)

  • Park, Dal-Won
    • Journal of the Korean School Mathematics Society
    • /
    • v.10 no.2
    • /
    • pp.237-246
    • /
    • 2007
  • According to 7-th curriculum, irrational number should be introduced using non-repeating infinite decimals. A rational number is defined by a number determined by the ratio of some integer p to some non-zero integer q in 7-th grade. In 8-th grade, A number is rational number if and only if it can be expressed as finite decimal or repeating decimal. A irrational number is defined by non-repeating infinite decimal in 9-th grade. There are misconceptions about a non-repeating infinite decimal. Although 1.4532954$\cdots$ is neither a rational number nor a irrational number, many high school students determine 1.4532954$\cdots$ is a irrational number and 0.101001001$\cdots$ is a rational number. The cause of misconceptions is the definition of a irrational number defined by non-repeating infinite decimals. It is a cause of misconception about a irrational number that a irrational number is defined by a non-repeating infinite decimals and the method of using symbol dots in infinite decimal is not defined in text books.

  • PDF

Understanding Turing and Kierkegaard through a Mathematical Model (튜링과 키에르케고어: 수학적 모델을 통한 이해)

  • Park, Chang Kyun
    • Journal for History of Mathematics
    • /
    • v.27 no.2
    • /
    • pp.139-152
    • /
    • 2014
  • This paper aims to compare and contrast Kierkegaard and Turing, whose birth dates were one hundred years apart, analyzing them from the perspective of the limit. The model of analysis is two concentric circles and movement in them and on the boundary of outer circle. In the model, Kierkegaard's existential stages have 1:1 correspondences: aesthetic stage, ethical stage, religious stage A and religious stage B correspond to inside of the inner circle, outside of the inner circle, the boundary of the outer circle and the outside of the outer circle, respectively. This paper claims that Turing belongs to inside of the outer circle and moves to the center while Kierkegaard belongs to outside of the outer circle and moves to the infinity. Both of them have movement of potential infinity but their directions are opposite.

On the Definition of Geometrical Progression of the High school (등비수열의 정의에 대한 연구)

  • Lee, Min-Jung;Lee, Yang
    • The Mathematical Education
    • /
    • v.51 no.3
    • /
    • pp.211-221
    • /
    • 2012
  • We discovered that definition of a Geometrical Progression(Sequence) have some differences in domestic textbooks & some foreign countries' books. This will be able to cause a chaos when students divide whether a sequence is a Geometrical Progression(Sequence) or not, and a question error when teachers compose questions about convergence conditions of Infinite Geometric progressions & series. We took a question investigation for students about definition of a Geometrical Progression(that is called G. P.), we discovered that high level students have an error about definition of a G. P.. So We modified expressions of terminology in domestic textbooks appropriately through a Geometrical Progression(Sequence), infinite series, & infinite geometrical series in some foreign countries' books.

Elementary mathematically gifted students' understanding of Pi (초등수학 영재교육 대상자의 원주율 개념에 대한 이해)

  • Kang, Hyangim;Choi, Eunah
    • Communications of Mathematical Education
    • /
    • v.29 no.1
    • /
    • pp.91-110
    • /
    • 2015
  • The purpose of this study is to investigate the understanding of pi of elementary gifted students and explore improvement direction of teaching pi. The results of this study are as follows. First, students understood insufficiently the property of approximation, constancy and infinity of pi from the fixation on 'pi = 3.14'. They mixed pi up with the approximation of pi as well. Second, they had a inclination to understand pi as algebraic formula, circumference by diameter. Third, few students understood the property of constancy and infinity of pi deeply. Lastly, the discussion activity provided the chance of finding the idea of the property of approximation of pi. In conclusion, we proposed several methods which improve the teaching of pi at elementary school.

The Metaphorical Model of Archimedes' Idea on the Sum of Geometrical Series (무한 등비급수의 합에 대한 Archimedes의 아이디어의 은유적 모델과 그 교육적 활용)

  • Lee, Seoung Woo
    • School Mathematics
    • /
    • v.18 no.1
    • /
    • pp.215-229
    • /
    • 2016
  • This study aims to identify Archimedes' idea used while proving proposition 23 in 'Quadrature of the Parabola' and to provide an alternative way for finding the sum of geometric series without applying the concept of limit by extending the idea though metaphor. This metaphorical model is characterized as static and thus can be complimentary to the dynamic aspect of limit concept adopted in Korean high school mathematics textbooks. In addition, middle school students can understand $0.999{\cdots}=1$ with this model in a structural way differently from the operative one suggested in Korean middle school mathematics textbooks. In this respect, I argue that the metaphorical model can be an useful educational tool for Korean secondary students to overcome epistemological obstacles inherent in the concepts of infinity and limit by making it possible to transfer from geometrical context to algebraic context.

중세 기독교 사상에서의 유한과 무한 - 아우구스티누스를 중심으로 -

  • 안가경;임종록;한정순
    • Journal for History of Mathematics
    • /
    • v.14 no.2
    • /
    • pp.55-60
    • /
    • 2001
  • In this paper we introduce three kinds of theory on the origin of the world, the formation theory, the emanation theory and the creation of nothing. Especially through Augustinus, great scholar of patristic philosophy in the Middle Ages, how the relationship between the God and the creature was shown with the concept of the infinity and the finite.

  • PDF

Beyond the Union of Rational and Irrational Numbers: How Pre-Service Teachers Can Break the Illusion of Transparency about Real Numbers? (유리수와 무리수의 합집합을 넘어서: 실수가 자명하다는 착각으로부터 어떻게 벗어날 수 있는가?)

  • Lee, Jihyun
    • Journal of Educational Research in Mathematics
    • /
    • v.25 no.3
    • /
    • pp.263-279
    • /
    • 2015
  • The introduction of real numbers is one of the most difficult steps in the teaching of school mathematics since the mathematical justification of the extension from rational to real numbers requires the completeness property. The author elucidated what questions about real numbers can be unanswered as the "institutional didactic void" in school mathematics defining real numbers as the union of the rational and irrational numbers. The pre-service teachers' explanations on the extension from rational to real numbers and the raison d'$\hat{e}$tre of arbitrary non-recurring decimals showed the superficial and fragmentary understanding of real numbers. Connecting school mathematics to university mathematics via the didactic void, the author discussed how pre-service teachers could break the illusion of transparency about the real number.

교사양성대학에서의 수학사 및 수리철학 강좌 운영

  • Sin, Hyeon-Yong;Seo, Bong-Geon
    • Communications of Mathematical Education
    • /
    • v.15
    • /
    • pp.1-7
    • /
    • 2003
  • 수학사 및 수리철학에 관한 연구는 교사양성 대학에서 더욱 강조되어야 할 부분임에도 불구하고 그에 관한 연구가 미진하다. 자연대의 수학과는 수학 그 자체가 중요하겠지만, 교사양성 대학에서는 수학 내용자체 뿐만 아니라, 수학의 역사적인 측면과 수학에 관한 인식론적인 측면이 함께 요구되어 진다. 절대적인 것으로 인식되어 온 수학에 대한 잘못된 선입견은 수학교육에도 심각한 악영향을 끼칠 수 있다. 그러나 괴델의 불완전성 정리 등으로 인해 수학에서의 논리체계는 더 이상 절대적이지 않다는 것을 알 수 있다. 본 연구에서는 숱한 오류들의 극복을 통해 발전해 온 수학사적인 측면과 그로 인하여 수학에 관한 인식론적 변화를 수학에서의 큰 사건들을 중심으로 살펴보고자 한다. 구체적으로 유클리드 기하에서 비유클리드 기하의 발견, 칸토어의 무한한 역설의 발생, 역설을 극복하기 위한 수학기토론의 탄생, 괴델의 불완전성 정리로 이어지는 과정들을 살펴보고, 그로 인해 도출되어지는 수학교육적 시사점을 논의해 보며, 이르르 바탕으로 교사양성 대학에서의 수학사 및 수리철학 강좌의 운영 방안을 제시한다.

  • PDF