• Title/Summary/Keyword: 무인항공시스템

Search Result 443, Processing Time 0.022 seconds

Research about Designation of Restricted Area Dedicated for Remote Piloted Aircraft Flight Test (무인항공기 비행시험 전용 제한구역 설정에 관한 연구)

  • Kee, Yeho
    • Journal of Aerospace System Engineering
    • /
    • v.9 no.2
    • /
    • pp.25-33
    • /
    • 2015
  • Global market of unmanned aircraft(UA) is rapidly expending based on the versatile and efficient utility of the UA. Domestically many industries, universities and research institutes are trying to do research and development of the UA in various angle of aspect. In spite of these effort, all the participants of research and development of the UA has been suffering the difficulty of acquiring the airspace around vicinity of Goheung airfield for the flight test of UA. Although the current procedure of execution of the flight test of UA is set after acquiring the airspace by applying the NOTAM(Notice To Air Man) to the Ministry of Land, Infrastructure and Transport(MLIT) at least 7 days before the flight test and commencing with the publication of the NOTAM by MLIT, if the flight test is carried out as planned, changing or reapplying the NOTAM expends mort time and makes difficulty often. Therefore it is needed that a restricted airspace for the flight test of UA is established and make all the executioner of flight test uses the exclusive airspace without limitation. This research proposes the restricted airspace with short term and long term establish requirement of airspace separately. The short term requirement has been established with the airspace of 10 nm radius and 8,000 ft altitude in which the requirements of flight test can be carried out more than 90% without needs of supplement of the additional airspace. The long term has been established within the airspace of 30 nm radius which is the maximum Radio Line Of Sight(RLOS) and 8,000 ft altitude with exclusion of current air way, airport control area, approaching corridor to the airport, existing restricted area(RA) and Military Operating Area(MOA) for the purpose of minimizing inconvenience of the other airspace user. Once establishing the exclusive airspace for the flight test of UA, research and development of industries, universities and research institutes will be more vigorous and contributes to the national economy.

Developing High Altitude Long Endurance (HALE) Solar-powered Unmanned Aerial Vehicle (UAV) (고고도 장기체공 태양광 무인기 개발)

  • Hwang, SeungJae;Kim, SangGon;Lee, YungGyo
    • Journal of Aerospace System Engineering
    • /
    • v.10 no.1
    • /
    • pp.59-65
    • /
    • 2016
  • Korea Aerospace Research Institute (KARI) is developing an electric-driven HALE UAV in order to secure system and operational technologies since 2010. Based on the 5 years of flight tests and design experiences of the previously developed electric-driven UAVs, KARI has designed EAV-3, a solar-powered HALE UAV. EAV-3 weighs 53 kg, the structure weight is 21 kg, and features a flexible wing of 19.5 m in span with the aspect ratio of 17.4. Designing the main wing and empennage of the EAV-3 the amount of the bending due to the flexible wing, 404 mm at 1-G flight condition based on T-800 composite material, and side wind effects due to low cruise speed, V_cr = 6 m/sec, are carefully considered. Also, unlike the general aircraft there is no center of gravity shift during the flight. Thus, the static margin cuts down to 28.4% and center of gravity moves back to 31% of the Mean Aerodynamic Chord (MAC) comparing to the previously developed scale-down HALE UAVs, EAV-2 and EAV-2H, to minimize a trim drag and enhance a performance of the EAV-3. The first flight of the EAV-3 has successfully conducted on the July 29, 2015 and the test flight above the altitude 14 km has efficiently achieved on the August 5, 2015 at the Goheung aviation center.

A Study on the Database Design in the MDO Environment (다분야 통합환경에서의 데이터베이스 설계 연구)

  • Hwang, Jin Yong;Jeong, Ju Yeong;Lee, Jae U;Byeon, Yeong Hwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.5
    • /
    • pp.25-36
    • /
    • 2003
  • Aircraft design pursues integrated design efforts by considering all design elements together. In the integrated design environment, it is crucial for the design data to be consistent, free of errorm, and most recent. Database design process consists of the analysis of the data which shall be stored and managed, the construction of the E-R Diagram, and the mapping of the database table. As a DBMS (DataBase Management System), Oracle 8i is employed to design and construct the database. The database design methodology is devised to apply for the several MDO(Multidisciplinary Design Optimization) techniques like MDF(MultiDisplinary Feasible), IDF(Individual Discipline Feasible), and CO(Collaborative Optimization). The defined process is demonstrated through a couple of design examples, including a simple numerical example and a UCAV(Unmanned Combat Aerial Vehicle) design optimization.

Simplified Dynamic Modeling of Small-Scaled Rotorcraft (축소형 회전익 항공기의 간략화된 동적 모델링)

  • Lee, Hwan;Lee, Sang-Kee
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.8
    • /
    • pp.56-64
    • /
    • 2005
  • It is prerequisite that we have to fomulate the nonlinear mathematical modeling to design the guidance and control system of rotorcraft-based unmanned aerial vehicle using a small-scaled commercial helicopter. The small-scaled helicopters are very different from the full-scale helicopters in dynamic behavior such as high rotation speed and high frequency dynamic characteristics. In this paper, the formulation of the mathematical model of the small-scaled helicopter to minimize the complexity is presented by component and source build-up approach. It is linearized at the trim condition of hovering and forward flight and analyzed the flight modes. The results of this approach have general trends but a little difference. To verify this approach, it is necessary to compare this theoretical model with experimental results by system identification using flight test as a next research topic.

Study on Dynamic Characteristics and Performance of Tip Jet Rotor Using Small-scaled Rotor (축소로터를 이용한 Tip Jet 로터의 성능 및 동특성 연구)

  • Kwon, Jae Ryong;Baek, Sang Min;Rhee, Wook;Lee, Jae Ha
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.2
    • /
    • pp.30-36
    • /
    • 2018
  • In this study, a small-scaled test system for a tip jet rotor was developed to contribute to the research on unmanned compound rotorcraft. The performance and dynamic characteristics of the tip jet rotor were investigated using the test system. The diameter of the tip jet rotor was set to 2m in consideration of the size of the test site and the pneumatic supply capacity of the. The rotating speed of the rotor was controlled by the pressure of the compressed air. The thrust and forces during the rotor rotation were measured using a load measuring device. A hydraulic actuator was installed for the dynamic test and full-bridge strain gages were attached to the root of each blade to measure the flap, lag, and torsion-wise responses generated when the rotor is excited by the actuator. The performance and dynamic characteristic tests were conducted at various rotor speeds and blade pitches. In order to check the validity of the test results, the results were also compared with the CAMRAD II analysis.

Design and test of cable based airborne capture mechanism for drone (케이블을 사용한 드론용 공중 포획 메커니즘의 설계 및 테스트)

  • Jung, Sanghoon;Nguyen, Van Sy;Kim, Byungkyu;An, Taeyoung
    • Journal of Aerospace System Engineering
    • /
    • v.14 no.3
    • /
    • pp.10-16
    • /
    • 2020
  • We propose a capture mechanism based on the principles of fishing nets that can be mounted on the drone using cable. The gripper mechanism, mainly proposed for the drone is heavy, and is limited to catch standardized objects. In contrast, the proposed capture device in this paper is light, flexible, and can capture various types of objects from a long distance. The theoretical relationships between cables and mechanisms were analyzed. Finally, the capture device was designed and manufactured to be installed in the drone (DJI S900) to conduct capturing experiments for various objects and verify the validity.

A Study on Structural-Thermal-Optical Performance through Laser Heat Source Profile Modeling Using Beer-Lambert's Law and Thermal Deformation Analysis of the Mirror for Laser Weapon System (Beer-Lambert 법칙을 적용한 레이저 열원 프로파일 모델링 및 레이저무기용 반사경의 열변형 해석을 통한 구조-열-광학 성능 연구)

  • Hong Dae Gi
    • Journal of Aerospace System Engineering
    • /
    • v.17 no.4
    • /
    • pp.18-27
    • /
    • 2023
  • In this paper, the structural-thermal-optical performance analysis of the mirror was performed by setting the laser heat source as the boundary condition of the thermal analysis. For the laser heat source model, the Beer-Lambert model considering semi-transparent optical material based on Gaussian beam was selected as the boundary condition, and the mechanical part was not considered, to analyze the performance of only the mirror. As a result of the thermal analysis, thermal stress and thermal deformation data due to temperature change on the surface of the mirror were obtained. The displacement data of the surface due to thermal deformation was fitted to a Zernike polynomial to calculate the optical performance, through which the performance of the mirror when a high-energy laser was incident on the mirror could be predicted.

Space Economy, Ecosystem Strategies for LEO 5G-NTN Space Communications (우주경제, LEO 5G-NTN 우주통신 생태계 전략)

  • Byungwoon Kim
    • Journal of Aerospace System Engineering
    • /
    • v.17 no.4
    • /
    • pp.58-66
    • /
    • 2023
  • The latest global issues are the Space economy and low-orbit Space communication. 3GPP announced Release 17 standardization in June 2022, and in this regard, the United States prepared a strategy to enhance the competitiveness of the low-orbit 5G-NTN Space industry, and create an ecosystem at the national level in March 2023. Global smartphone semiconductor manufacturers have announced the development and verification results of standard-based chip technology, and satellite communication operators are launching low-orbit 5G-NTN Space communication services and rate products through convergence between terrestrial communication networks. This study diagnoses the current status of Korea's low-orbit 5G-NTN space communication ecosystem. We present our ecosystem creation strategy in terms of fair competition in the market, the service legal system, and the national R&D governance system.

Moving Target Indication using an Image Sensor for Small UAVs (소형 무인항공기용 영상센서 기반 이동표적표시 기법)

  • Yun, Seung-Gyu;Kang, Seung-Eun;Ko, Sangho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.12
    • /
    • pp.1189-1195
    • /
    • 2014
  • This paper addresses a Moving Target Indication (MTI) algorithm which can be used for small Unmanned Aerial Vehicles (UAVs) equipped with image sensors. MTI is a system (or an algorithm) which detects moving objects. The principle of the MTI algorithm is to analyze the difference between successive image data. It is difficult to detect moving objects in the images recorded from dynamic cameras attached to moving platforms such as UAVs flying at low altitudes over a variety of terrain, since the acquired images have two motion components: 'camera motion' and 'object motion'. Therefore, the motion of independent objects can be obtained after the camera motion is compensated thoroughly via proper manipulations. In this study, the camera motion effects are removed by using wiener filter-based image registration, one of the non-parametric methods. In addition, an image pyramid structure is adopted to reduce the computational complexity for UAVs. We demonstrate the effectiveness of our method with experimental results on outdoor video sequences.

Vegetation Monitoring using Unmanned Aerial System based Visible, Near Infrared and Thermal Images (UAS 기반, 가시, 근적외 및 열적외 영상을 활용한 식생조사)

  • Lee, Yong-Chang
    • Journal of Cadastre & Land InformatiX
    • /
    • v.48 no.1
    • /
    • pp.71-91
    • /
    • 2018
  • In recent years, application of UAV(Unmanned Aerial Vehicle) to seed sowing and pest control has been actively carried out in the field of agriculture. In this study, UAS(Unmanned Aerial System) is constructed by combining image sensor of various wavelength band and SfM((Structure from Motion) based image analysis technique in UAV. Utilization of UAS based vegetation survey was investigated and the applicability of precision farming was examined. For this purposes, a UAS consisting of a combination of a VIS_RGB(Visible Red, Green, and Blue) image sensor, a modified BG_NIR(Blue Green_Near Infrared Red) image sensor, and a TIR(Thermal Infrared Red) sensor with a wide bandwidth of $7.5{\mu}m$ to $13.5{\mu}m$ was constructed for a low cost UAV. In addition, a total of ten vegetation indices were selected to investigate the chlorophyll, nitrogen and water contents of plants with visible, near infrared, and infrared wavelength's image sensors. The images of each wavelength band for the test area were analyzed and the correlation between the distribution of vegetation index and the vegetation index were compared with status of the previously surveyed vegetation and ground cover. The ability to perform vegetation state detection using images obtained by mounting multiple image sensors on low cost UAV was investigated. As the utility of UAS equipped with VIS_RGB, BG_NIR and TIR image sensors on the low cost UAV has proven to be more economical and efficient than previous vegetation survey methods that depend on satellites and aerial images, is expected to be used in areas such as precision agriculture, water and forest research.