• Title/Summary/Keyword: 무인표적기

Search Result 28, Processing Time 0.026 seconds

Optimal Design of Unmanned Target Drone Propeller (무인 표적기 프로펠러의 최적 설계)

  • 성형건;노태성
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.05a
    • /
    • pp.115-118
    • /
    • 2003
  • A Propeller as the propulsion system of a target drone has been designed. The vortex theory has been applied for the propeller design method. A compressible effect has been removed and the Reynolds Number assumed to be constant. Design variables have been the chord length and the geometric angle of the blade. The aim of this optimum design has been an efficiency maximization. A performance of the designed propeller has been analyzed.

  • PDF

Small UAV tracking using Kernelized Correlation Filter (커널상관필터를 이용한 소형무인기 추적)

  • Sun, Sun-Gu;Lee, Eui-Hyuk
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.1
    • /
    • pp.27-33
    • /
    • 2020
  • Recently, visual object detection and tracking has become a vital role in many different applications. It spans various applications like robotics, video surveillance, and intelligent vehicle navigation. Especially, in current situation where the use of UAVs is expanding widely, detection and tracking to soot down illegal UAVs flying over the sky at airports, nuclear power plants and core facilities is becoming a very important task. The remarkable method in object tracking is correlation filter based tracker like KCF (Kernelized Correlation Filter). But it has problems related to target drift in tracking process for long-term tracking. To mitigate the target drift problem in video surveillance application, we propose a tracking method which uses KCF, adaptive thresholding and Kalman filter. In the experiment, the proposed method was verified by using monochrome video sequences which were obtained in the operational environment of UAV.

Development of Low-Cost Automatic Flight Control System for an Unmanned Target Drone (무인표적기용 저가형 자동비행시스템 개발)

  • Lee, Jang-Ho;Ryu, Hyeok;Kim, Jae-Eun;Ahn, Iee-Ki
    • Journal of Advanced Navigation Technology
    • /
    • v.8 no.1
    • /
    • pp.19-26
    • /
    • 2004
  • This paper deals with the automatic flight control system for an unmanned target drone which is operated by an army as an anti-air gun shooting training. By automation of unmanned target drone that is manually operated by external pilot, pilot can reduce workload and an army can reduce the budget. Most UAVs which are developed until today use high-cost sensors as AHRS and IMU to measure the attitude, but those are contradictory for the reduction of budget. This paper says the development of low-cost automatic flight control system which makes possible of automatic flight with low-cost sensors. We have developed the integrated automatic flight control system by integrating electricity module, switching module, monitoring module and RC receiver as an one module. We also prove the performance of automatic flight control system by flight test.

  • PDF

Control of Multiple UAV's based on Swarm Intelligence (무리지능을 이용한 복수 무인기 제어)

  • Oh, Soo-Hun
    • Current Industrial and Technological Trends in Aerospace
    • /
    • v.7 no.1
    • /
    • pp.141-152
    • /
    • 2009
  • The simultaneous operation of multiple UAV's makes it possible for us to raise the mission accomplishment and cost efficiency. For this we need an easily scalable control algorithm, and swarm intelligence having the characteristics such as flexibility, robustness, decentralized control and self-organization comes into the spotlight as a practical substitute. In this paper the features of swarm intelligence are described, and various research results are introduced which show that the application of swarm intelligence to the control of multiple UAV's enables the missions of surveillance, path planning, target tracking and attack to be accomplished efficiently by simulations and tests.

  • PDF

Acquiring Precise Coordinates of Ground Targets through GCP Geometric Correction of Captured Images in UAS (무인 항공 시스템에서 촬영 영상의 GCP 기하보정을 통한 정밀한 지상 표적 좌표 획득 방법)

  • Namwon An;Kyung-Mee Lim;So-Young Jeong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.26 no.2
    • /
    • pp.129-138
    • /
    • 2023
  • Acquiring precise coordinates of ground targets can be regarded as the key mission of the tactical-level military UAS(Unmanned Aerial System) operations. The coordinates deviations for the ground targets estimated from UAV (Unmanned Aerial Vehicle) images may depend on the sensor specifications and slant ranges between UAV and ground targets. It has an order of several tens to hundreds of meters for typical tactical UAV mission scenarios. In this paper, we propose a scheme that precisely acquires target coordinates from UAS by mapping image pixels to geographical coordinates based on GCP(Ground Control Points). This scheme was implemented and tested from ground control station for UAS. We took images of targets of which exact location is known and acquired the target coordinates using our proposed scheme. The experimental results showed that errors of the acquired coordinates remained within an order of several meters and the coordinates accuracy was significantly improved.

A Study on Sensor Collection Planning based on Target Scheduling and Deviation Correction for Strategic UAV Surveillance and Reconnaissance (전략급 무인기의 감시정찰을 위한 표적 스케줄링 및 편차 보정 기반 촬영계획 자동화 기술 연구)

  • Junghee Cho;Yunjeong Choi;Hayrim Lee;Soyoung Jeong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.27 no.2
    • /
    • pp.177-188
    • /
    • 2024
  • The strategic UAV for theater level ISR(Intelligence, Surveillance and Reconnaissance) mission typically has numerous ground targets over area of responsibility(AOR) or area of operation(AO). It is necessary to automatically incorporate these multitude of ground targets into mission planning process in order to collect ISR images before actual flight mission. In addition, weather information such as wind direction and/or velocity may have significant impacts on the qualities of collected sensor images, especially in SAR(Synthetic Aperture Radar) images. Thus weather factors in the operation altitude should also be considered in the mission planning stage. In this study, we propose a novel mission planning scheme based on target scheduling and deviation correction method incorporating weather factors.

A Study on the Techniques of Path Planning and Measure of Effectiveness for the SEAD Mission of an UAV (무인기의 SEAD 임무 수행을 위한 임무 경로 생성 및 효과도 산출 기법 연구)

  • Woo, Ji Won;Park, Sang Yun;Nam, Gyeong Rae;Go, Jeong Hwan;Kim, Jae Kyung
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.5
    • /
    • pp.304-311
    • /
    • 2022
  • Although the SEAD(suppression to enemy air defenses) mission is a strategically important task in modern warfare, the high risk of direct exposure to enemy air defense assets forces to use of unmanned aerial vehicles. this paper proposes a path planning algorithm for SEAD mission for an unmanned aerial vehicle and a method for calculating the mission effectiveness on the planned path. Based on the RRT-based path planning algorithm, a low-altitude ingress/egress flight path that can consider the enemy's short-range air defense threat was generated. The Dubins path-based Intercept path planning technique was used to generate a path that is the shortest path while avoiding the enemy's short-range anti-aircraft threat as much as possible. The ingress/intercept/egress paths were connected in order. In addition, mission effectiveness consisting of fuel consumption, the survival probability, the time required to perform the mission, and the target destruction probability was calculated based on the generated path. The proposed techniques were verified through a scenario.

Development of a Comprehensive Performance Test Facility for Small Millimeter-wave Tracking Radar (소형 추적 레이다용 종합성능시험 시설 개발)

  • Kim, Hong-Rak;Kim, Youn-Jin;Woo, Seon-Keol;An, Se-Hwan
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.3
    • /
    • pp.121-127
    • /
    • 2020
  • The small tracking radar targets the target in a real-time, fast-moving, fast-moving target against aircraft with a large RCS that is maneuvering at low speed and a small RCS aircraft maneuvering at high speed (fighters, drones, helicopters, etc.) It is a pulsed radar that detects and tracks. Performing a performance test on a tracking radar in a real environment is expensive, and it is difficult to quantitatively measure performance in a real environment. Describes the composition of the laboratory environment's comprehensive performance test facility and the main requirements and implementation of each configuration.Anechoic chambers to simulate the room environment, simulation target generator to simulate the signal of the room target, target It is composed of a horn antenna driving device to simulate the movement of a vehicle and a Flight Motion Simulatior (FMS) to simulate the flight environment of a tracking radar, and each design and implementation has been described.

Design of Multi-Mode Radar Signal Processor for UAV Detection (무인기 탐지를 위한 멀티모드 레이다 신호처리 프로세서 설계)

  • Lee, Seunghyeok;Jung, Yongchul;Jung, Yunho
    • Journal of Advanced Navigation Technology
    • /
    • v.23 no.2
    • /
    • pp.134-141
    • /
    • 2019
  • Radar systems are divided into the pulse Doppler (PD) radar and the frequency modulated continuous wave (FMCW) radar depending on the transmission waveform. In particular, the PD radar is advantageous for long-range target detection, and the FMCW radar is suitable for short-range target detection. In this paper, we present design and implementation results for a multi-mode radar signal processor (RSP) that can support both PD and FMCW radar systems to detect unmanned aerial vehicles (UAVs) at short distances as well as long distances. The proposed radar signal processor can be implemented based on Altera Cyclone-IV FPGA with 19,623 logic elements, 9,759 registers, and 25,190,400 memory bits. The logic elements and registers of the proposed radar signal processor are reduced by approximately 43% and 30%, respectively, compared to the sum of logic elements and registers of the conventional PD radar and FMCW radar signal processor.

A Study for Operation Technique Plan of Low-Cost UAV Data Bus (저가형 무인항공기 DATA BUS 운용기술 방안 연구)

  • Gil, Hyun-Cheol;Ahn, Dong-Mhan;Hong, Gyo-Young
    • Journal of Advanced Navigation Technology
    • /
    • v.16 no.6
    • /
    • pp.1024-1031
    • /
    • 2012
  • In the past, the part of development of that is used for the military aviation target or reconnaissance is being extended to the range of application not only reconnaissance but also civilian industry as the introduction of the newest IT technology and the technical evolution. The Civilian low-cost UAV that is expected growth at the market of UAV in the world is accelerated to the extended applicability in the fields. However, The UAV study is recently focused on the Link and The Data bus because the main decision of the civilian UAV system configuration is not suitable to determinate the factory of price. In this paper is analysed the UAV data bus through the simulation in same condition both the CAN Bus which used the automobile industry and the MIL-STD-1553B which is used the aviation industry. As a comparison result, we identified that the CAN Bus of conventional configuration is possible to transmit the data without the need for a separate coupler equipment against the MIL-STD-1553B data. Thus, we identified that the CAN bus is capable to apply as a low-cost UAV internal data bus to optimize configuration and weight than 1553B.