• Title/Summary/Keyword: 무발산 요소

Search Result 12, Processing Time 0.017 seconds

Computation of Incompressible Flows Using Higher Order Divergence-free Elements (고차의 무발산 요소를 이용한 비압축성 유동계산)

  • Kim, Jin-Whan
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.5
    • /
    • pp.9-14
    • /
    • 2011
  • The divergence-free finite elements introduced in this paper are derived from Hermite functions, which interpolate stream functions. Velocity bases are derived from the curl of the Hermite functions. These velocity basis functions constitute a solenoidal function space, and the gradient of the Hermite functions constitute an irrotational function space. The incompressible Navier-Stokes equation is orthogonally decomposed into its solenoidal and irrotational parts, and the decoupled Navier-Stokes equations are then projected onto their corresponding spaces to form appropriate variational formulations. The degrees of the Hermite functions we introduce in this paper are bi-cubis, quartic, and quintic. To verify the accuracy and convergence of the present method, three well-known benchmark problems are chosen. These are lid-driven cavity flow, flow over a backward facing step, and buoyancy-driven flow within a square enclosure. The numerical results show good agreement with the previously published results in all cases.

A STUDY ON INCOMPRESSIBLE FLOW COMPUTATIONS USING A HERMITE STREAM FUNCTION (Hermite 유동함수를 이용한 비압축성 유동계산에 대한 연구)

  • Kim, J.W.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.61-65
    • /
    • 2006
  • This paper describes a recent development on the divergence free basis function based on a hermite stream function. The well-known cavity problem has been used to compare the accuracy and the convergence of the present method with those of a modified residual method known as one of the stabilized finite element methods. The comparison showed the present method performs better in the accuracy and convergence.

  • PDF

Incompressible How Computations using a Hermite Stream Function (Hermite 유동함수를 이용한 비압축성 유동계산)

  • Kim, Jin-Whan
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.411-414
    • /
    • 2006
  • This paper describes a recent development on the divergence free basis function based on a hermite stream function. The well-known cavity problem has been used to compare the accuracy and the convergence of the present method with those of a modified residual method known as one of the stabilized finite e1ement methods. The comparison showed the present method performs better in the accuracy and convergence.

  • PDF

COMPUTATIONS OF A NATURAL CONVECTION FLOW USING HERMITE FINITE ELEMENTS (Hermite 유한요소에 의한 자연대류 유동계산)

  • Kim, J.W.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2007.10a
    • /
    • pp.220-225
    • /
    • 2007
  • This paper is a continuation of the recent development on the hermite-based divergence free basis function and deals with a non-isothermal fluid flow thru the buoyancy driven flow in a square cavity with temperature difference across the two sides. The basis functions for the velocities consist of the hermite function and its curl. However, the basis for the temperature are the hermite function and its gradienst. Hence, the number of degrees of freedom at a node becomes 6, which are the stream function, two velocities, the temperature and its x- and y-derivatives. Numerical results for the streamlines, the temperatures, the x-velocities and the y-velocities show good agreements with those of De vahl Davis[7].

  • PDF

INCOMPRESSIBLE FLOW COMPUTATIONS USING A HERMITE STREAM FUNCTION (Hermite 유동함수를 이용한 비압축성 유동계산)

  • Kim, J.W.
    • Journal of computational fluids engineering
    • /
    • v.12 no.1
    • /
    • pp.35-42
    • /
    • 2007
  • This paper describes a recent development on the divergence free basis function based on a hermite stream function and verifies its validity by comparing results with those from a modified residual method known as one of stabilized finite element methods. It can be shown that a proper choice of degrees of freedom at a node with a proper arrangement of the hermite interpolation functions can yield solenoidal or divergent free interpolation functions for the velocities. The well-known cavity problem has been chosen for validity of the present algorithm. The comparisons from numerical results between the present and the modified residual showed the present method yields better results in both the velocity and the pressure within modest Reynolds numbers(Re = 1,000).

Optimization of Optical Coupling Properties of Active-Passive Butt Joint Structure in InP-Based Ridge Waveguide (InP계 리지 도파로 구조에서 활성층-수동층 버트 조인트의 광결합 효율 최적화 연구)

  • Song, Yeon Su;Myeong, Gi-Hwan;Kim, In;Yu, Joon Sang;Ryu, Sang-Wan
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.27 no.4
    • /
    • pp.47-54
    • /
    • 2020
  • Integration of active and passive waveguides is an essential component of the photonic integrated circuit and its elements. Butt joint is one of the important technologies to accomplish it with significant advantages. However, it suffers from high optical loss at the butt joint junction and need of accurate process control to align both waveguides. In this study, we used beam propagation method to simulate an integrated device composed of a laser diode and spot size converter (SSC). Two SSCs with different mode properties were combined with laser waveguide and optical coupling efficiency was simulated. The SSC with larger near field mode showed lower coupling efficiency, however its far field pattern was narrower and more symmetric. Tapered passive waveguide was utilized for enhancing the coupling efficiency and tolerance of waveguide offset at the butt joint without degrading the far field pattern. With this technique, high optical coupling efficiency of 89.6% with narrow far field divergence angle of 16°×16° was obtained.

Computations of Natural Convection Flow Using Hermite Stream Function Method (Hermite 유동함수법에 의한 자연대류 유동 계산)

  • Kim, Jin-Whan
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.5
    • /
    • pp.1-8
    • /
    • 2009
  • This paper is a continuation of the recent development on Hermite-based divergence free element method and deals with a non-isothermal fluid flow thru the buoyancy driven flow in a square enclosure with temperature difference across the two sides. The basis functions for the velocity field consist of the Hermite function and its curl while the basis functions for the temperature field consists of the Hermite function and its gradients. Hence, the number of degrees of freedom at a node becomes 6, which are the stream function, two velocities, the temperature and its x and y derivatives. This paper presents numerical results for Ra = 105, and compares with those from a stabilized finite element method developed by Illinca et al. (2000). The comparison has been done on 32 by 32 uniform elements and the degree of approximation of elements used for the stabilized finite element are linear (Deg. 1) and quadratic (Deg. 2). The numerical results from both methods show well agreements with those of De vahl Davi (1983).

HERMITE BICUBIC STREAM FUNCTION METHOD FOR INCOMPRESSIBLE FLOW COMPUTATIONS IN TWO DIMENSIONS (이차원 비압축성 유동 계산을 위한 Hermite 쌍 3차 유동 함수법)

  • Kim, J.W.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03a
    • /
    • pp.33-41
    • /
    • 2008
  • This paper is an extension of previous study[9] on a development of a divergence-free element method using a hermite interpolated stream function. Divergence-free velocity bases defined on rectangles derived herein produce pointwise divergence-free flow fields. Hence the explicit imposition of continuity constraint is not necessary and the Galerkin finite element formulation for velocities does not involve the pressure. The divergence-free element of the previous study employed hermite serendipity cubic for interpolation of stream function, and it has been noted a possible discontinuity in variables along element interfaces. This deficiency can be removed by use of a hermite bicubic interpolated stream function, which requires at each element corners four degrees-of-freedom such as the unknown variable, its x- and y-derivatives and its cross derivative. Detailed derivations are presented for both solenoidal and irrotational bases from the hermite bicubic interpolated stream function. Numerical tests are performed on the lid-driven cavity flow, and results are compared with those from hermite serendipity cubics and a stabilized finite element method by Illinca et al[7].

  • PDF

HERMITE BICUBIC STREAM FUNCTION METHOD FOR INCOMPRESSIBLE FLOW COMPUTATIONS IN TWO DIMENSIONS (이차원 비압축성 유동 계산을 위한 Hermite 쌍 3차 유동 함수법)

  • Kim, J.W.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.33-41
    • /
    • 2008
  • This paper is an extension of previous study[9] on a development of a divergence-free element method using a hermite interpolated stream function. Divergence-free velocity bases defined on rectangles derived herein produce pointwise divergence-free flow fields. Hence the explicit imposition of continuity constraint is not necessary and the Galerkin finite element formulation for velocities does not involve the pressure. The divergence-free element of the previous study employed hermite serendipity cubic for interpolation of stream function, and it has been noted a possible discontinuity in variables along element interfaces. This deficiency can be removed by use of a hermite bicubic interpolated stream function, which requires at each element corners four degrees-of-freedom such as the unknown variable, its x- and y-derivatives and its cross derivative. Detailed derivations are presented for both solenoidal and irrotational bases from the hermite bicubic interpolated stream function. Numerical tests are performed on the lid-driven cavity flow, and results are compared with those from hermite serendipity cubics and a stabilized finite element method by Illinca et al[7].

  • PDF

COMPUTATIONS OF NATURAL CONVECTION FLOW WITHIN A SQUARE CAVITY BY HERMITE STREAM FUNCTION METHOD (Hermite 유동함수법에 의한 정사각형 공동 내부의 자연대류 유동계산)

  • Kim, J.W.
    • Journal of computational fluids engineering
    • /
    • v.14 no.4
    • /
    • pp.67-77
    • /
    • 2009
  • This paper is a continuation of a recent development on the Hermite-based divergence-free element method and deals with a non-isothermal fluid flow driven by the buoyancy force in a square cavity with temperature difference across the two sides. Two Hermite functions are considered for numerical computations in this paper. One is a cubic function and the other is a quartic function. The degrees-of-freedom of the cubic Hermite function are stream function and its first and second derivatives for the velocity field, and temperature and its first derivatives for the temperature field. The degrees-of-freedom of the quartic Hermite function include two second derivatives and one cross derivative of the stream function in addition to the degrees-of-freedom of the cubic stream function. This paper presents a brief review on the Hermite based divergence-free basis functions and its finite element formulations for the buoyancy driven flow. The present algorithm does not employ any upwinding or a stabilization term. However, numerical values and contour graphs for major flow variables showed good agreements with those by De Vahl Davis[6].