• Title/Summary/Keyword: 무리수 개념의 학생 인식

Search Result 4, Processing Time 0.015 seconds

Students' cognition and a teacher's questioning strategies in the error-finding activity of the concept of irrational numbers (무리수 개념의 오류 찾기 활동에서 학생 인식과 교사의 발문 전략)

  • Na, Youn-Sung;Choi, Song Hee;Kim, Dong-joong
    • The Mathematical Education
    • /
    • v.62 no.1
    • /
    • pp.35-55
    • /
    • 2023
  • The purpose of this study is to examine not only students' cognition in the mathematical error-finding activity of the concept of irrational numbers, but also the students' learning stance regarding the use of errors and a teacher's questioning strategies that lead to changes in the level of mathematical discourse. To this end, error-finding individual activities, group activities, and additional interviews were conducted with 133 middle school students, and students' cognition and the teacher's questioning strategies for changes in students' learning stance and levels of mathematical discourse were analyzed. As a result of the study, students' cognition focuses on the symbolic representation of irrational numbers and the representation of decimal numbers, and they recognize the existence of irrational numbers on a number line, but tend to have difficulty expressing a number line using figures. In addition, the importance of the teacher's leading and exploring questioning strategy was observed to promote changes in students' learning stance and levels of mathematical discourse. This study is valuable in that it specified the method of using errors in mathematics teaching and learning and elaborated the teacher's questioning strategies in finding mathematical errors.

A Case Study on the Introducing Method of Irrational Numbers Based on the Freudenthal's Mathematising Instruction Theory (Freudenthal의 수학화 학습지도론에 따른 무리수 개념 지도 방법의 적용 사례)

  • Lee, Young-Ran;Lee, Kyung-Hwa
    • Journal of Educational Research in Mathematics
    • /
    • v.16 no.4
    • /
    • pp.297-312
    • /
    • 2006
  • As research on the instruction method of the concept of irrational numbers, this thesis is theoretically based on the Freudenthal's Mathematising Instruction Theory and a conducted case study in order to find an introduction method of irrational numbers. The purpose of this research is to provide practical information about the instruction method ?f irrational numbers. For this, research questions have been chosen as follows: 1. What is the introducing method of irrational numbers based on the Freudenthal's Mathematising Instruction Theory? 2 What are the Characteristics of the teaming process shown in class using introducing instruction of irrational numbers based on the Freudenthal's Mathematising Instruction? For questions 1 and 2, we conducted literature review and case study respectively For the case study, we, as participant observers, videotaped and transcribed the course of classes, collected data such as reports of students' learning activities, information gathered through interviews, and field notes. The result was analyzed from three viewpoints such as the characteristics of problems, the application of mathematical means, and the development levels of irrational numbers concept.

  • PDF

A Historical Study on the Continuity of Function - Focusing on Aristotle's Concept of Continuity and the Arithmetization of Analysis - (함수의 연속성에 대한 역사적 고찰 - 아리스토텔레스의 연속 개념과 해석학의 산술화 과정을 중심으로 -)

  • Baek, Seung Ju;Choi, Younggi
    • Journal of Educational Research in Mathematics
    • /
    • v.27 no.4
    • /
    • pp.727-745
    • /
    • 2017
  • This study investigated the Aristotle's continuity and the historical development of continuity of function to explore the differences between the concepts of mathematics and students' thinking about continuity of functions. Aristotle, who sought the essence of continuity, characterized continuity as an 'indivisible unit as a whole.' Before the nineteenth century, mathematicians considered the continuity of functions based on space, and after the arithmetization of nineteenth century modern ${\epsilon}-{\delta}$ definition appeared. Some scholars thought the process was revolutionary. Students tended to think of the continuity of functions similar to that of Aristotle and mathematicians before the arithmetization, and it is inappropriate to regard students' conceptions simply as errors. This study on the continuity of functions examined that some conceptions which have been perceived as misconceptions of students could be viewed as paradigmatic thoughts rather than as errors.

TRIZ-based Creative Problem Solving Process (트리즈 기반의 창의적 문제해결 프로세스)

  • Kim, Eun-Gyung
    • The Journal of Korean Institute for Practical Engineering Education
    • /
    • v.2 no.1
    • /
    • pp.28-34
    • /
    • 2010
  • Traditionally engineers' main roles are concentrated on solving any given problems and engineering education has emphasized problem solving ability. Therefore engineers intend to solve easily perceived problems with their knowledge and experience instead of trying to analyze the given problems thoroughly and to define real problems, and go through lots of trial and error. So, engineers require the ability to define real problems accurately before trying to solve the problems. This study proposes a real problem definition process using visualization of a core zone and TRIZ concepts such as contradictions and IFR(Ideal Final Result) in order to define real problems with minimum trial and error. TRIZ is the theory of inventive problem solving and was developed by a Soviet engineer and researcher Genrich Altshuller from 1946. Nowadays many industries use TRIZ and its effectiveness was already proved by lots of real problem solving in various areas. Therefore TRIZ might be very effective tool for developing students' inventive thinking ability in engineering education.

  • PDF