컨테이너 터미널에서는 장치장으로 반입되는 수출 컨테이너의 무게를 몇 단계 그룹으로 나누고 각 무게그룹 별로 모아서 장치한다. 이는 수출 컨테이너를 선박에 싣는 적하 작업 시 선박의 안정성을 위하여 무거운 무게그룹의 컨테이너들을 장치장에서 먼저 반출하여 선박의 바닥 쪽에 놓기 위함이다. 하지만 반입되는 컨테이너의 무게그룹을 결정할 때 사용하는 운송사로부터 받은 무게정보는 부정확한 경우가 많아 하나의 스택(stack)에 서로 다른 무게그룹에 속하는 컨테이너들이 섞이게 된다. 이로 인하여 무거운 무게그룹의 컨테이너를 반출할 때 해당 컨테이너의 상단에 놓여진 보다 가벼운 무게그룹의 컨테이너들을 임시로 옮겨야 하는 재취급(rehandling, reshuffling)이 발생하게 된다. 적하작업 시 장치장에서 재취급이 빈번히 발생하면 작업이 지연되므로 터미널 생산성 향상을 위해서는 재취급 발생을 가급적 줄여야 한다. 본 논문에서는 기계학습 기법을 적용하여 반입 컨테이너의 무게그룹을 보다 정확히 추정하는 방안을 제안한다. 또한 탐색을 통하여 분류기 생성에 관여하는 비용행렬(cost matrix)을 조정함으로써 재취급 발생을 줄일 수 있는 분류기(classifier)를 생성하는 방안을 함께 소개한다. 실험 결과 본 논문에서 제안하는 방안 적용 시 재취급 발생을 $5{\sim}7%$ 정도 줄일 수 있음을 예상할 수 있었다.
본 연구는 중학교 수학 영재를 위한 심화학습 주제로 사용해 볼 수 있는 볼록다각형의 무게중심을 연구하고, 그것을 학생들에게 지도한 예시를 소개한다 아르키메데스의 질량중심의 성질을 바탕으로 다각형의 무게중심을 정의하고, 적분과 내분점에 의해 무게중심 위치를 찾을 수 있는 방법을 설명할 것이다. 그리고 학생들이 무게중심의 성질을 발견하고 정당화하는 과정 속에서 다양한 수학적 사고를 경험하고 여러 문제해결 방법을 시도한다는 것을 살펴본다. 이러한 연구 내용을 통해 교사는 무게중심에 대한 통찰을 가지고 수학 영재를 안내할 수 있고, 학생들이 수학자와 유사한 경험을 하면서 수학적 사고를 중시하는 심화학습에 참여하게 할 수 있을 것이다.
본 연구에서 제시하는 무게중심 확인실험 프로그램개발은 2013년 '동국대학교 과학영재교육원'에서 융합형 영재프로그램으로 개발되어 초등 영재학생 10개 집단 120명과 중등수학영재학생 24명을 대상으로 진행되었다. 무게중심 확인실험은 한국 과학창의재단에서 제시하는 융합형인재교육(STEAM) 학습준거 틀에서 수행된 3단계 과정을 이행하여 창의적 융합교육의 효과를 극대화하였다. 본 연구가 갖는 3가지 특징은 다음과 같다. 첫째, 연구에서 새롭게 개발된 무게중심 확인실험은 수학과 물리가 융합된 교육방식이다. 둘째, 실험에 사용되는 모형은 학생들의 능동적 활동으로 창의적인 모형 설계가 가능하다. 셋째, 무게중심 확인실험 프로그램은 학습 능력에 따라 수준별 수업으로서 전환이 가능하다. 위에서 제시한 특성들을 바탕으로 무게중심 확인실험을 통하여 창의적 융합교육의 효과를 극대화시킨다. 설문조사 결과는 주어진 지식을 단순 암기하는 학습에서 벗어나 실험에 필요한 배경지식 이해, 실험 설계, 실험 과정, 실험 결과의 단계를 거쳐 학습된다. 설문조사와 학생들의 실험 후 토의 결과, 현재 수학 또는 과학 교육과정이 제시하는 무게중심 학습과 비교하여, 새롭게 개발된 융합형 프로그램이 교육의 효과가 뛰어남을 보여 준다. 본 연구는 수학이 다른 교과영역과 융합되는 새로운 융합형 교육방식을 제시한다. 특히 무게중심을 찾고 이를 확인하는 새로운 형태를 제시한다. 결론적으로 교수자와 학습자가 모두 만족할 수 있는 새로운 무게중심 교육의 틀을 제시한다.
캐릭터의 자세가 변할 때 마다 캐릭터의 무게 중심(COM) 위치도 변하게 된다. 이 때 무게 중심의 위치 변화는 걷기, 뛰기, 쭈그려 앉기 등 다양한 동작 각각에 대응되는 독자적인 패턴을 가지므로 이를 이용하면 원래 동작의 정보를 알아낼 수 있다. 본 논문에서는 캐릭터의 무게 중심의 위치 변화를 토대로 동작을 예측하는 모션 생성 기법을 제안한다. 이 방법을 이용하면 무게 중심 정보를 통해 원래 동작의 유형에 대한 별도의 라벨 없이도 다양한 동작을 생성할 수 있다. 그러므로 네트워크의 학습 및 실행을 위한 데이터셋을 만들 때 사람의 손을 거칠 필요 없이 전처리를 비롯한 모든 과정을 자동으로 진행할 수 있다. 본 논문에서 제안하는 신경망 모델은 캐릭터의 모션 이력(history) 정보와 무게 중심 정보들을 입력 받아 현재 프레임에서의 포즈 정보를 출력하며, 연속적인 시계열 모션 데이터를 다루기 위해 1차원 Convolution을 수행하는 간단한 형태의 Convolutional Neural Network(CNN)를 사용하여 학습되었다.
본 논문에서는 단일 강체 모델(single rigid body)의 무게 중심(center of mass) 좌표계와 발의 위치를 활용하여 캐릭터의 동작을 생성하는 프레임워크를 제안한다. 이 프레임워크를 사용하면 기존의 전신 동작(full body)에 대한 정보를 사용할 때 보다 입력 상태 벡터(input state)의 차원을 줄임으로써 강화 학습의 속도를 개선할 수 있다. 또한 기존의 방법보다 학습 속도를 약 2 시간(약 68% 감소) 감소시켰음에도 기존의 방법 대비 최대 7.5배(약 1500 N)의 외력을 더 견딜 수 있는 더욱 견고한(robust) 모션을 생성할 수 있다. 본 논문에서는 이를 위해 무게 중심의 다음 좌표계를 구하기 위해 중심 역학(centroidal dynamics)을 활용하였고, 이에 필요한 매개 변수(parameter)들과 다음 발의 위치와 접촉력 계산에 필요한 매개 변수들을 구하는 정책(policy)의 학습을 심층 강화 학습(deep reinforcement learning)을 사용하여 구현하였다.
컨테이너 터미널에서는 장치장(yard)으로 반입되는 수출 컨테이너의 무게를 몇 단계 그룹으로 나누고 각 무게그룹 별로 모아서 장치한다. 이는 수출 컨테이너를 선박에 싣는 적하작업 시 선박의 안정성을 위하여 무거운 무게그룹의 컨테이너들을 장치장에서 먼저 반출하여 선박의 바닥 쪽에 놓기 위함이다. 하지만 반입되는 컨테이너의 무게 그룹을 결정할 때 사용하는 운송사로부터 받은 무게정보는 부정확한 경우가 많아 하나의 스택(stack)에 서로 다른 무게그룹에 속하는 컨테이너들이 섞여서 쌓이게 된다. 이로 인하여 무거운 무게그룹의 컨테이너를 반출할 때 해당 컨테이너의 상단에 놓여진 보다 가벼운 무게그룹의 컨테이너들을 임시로 옮겨야 하는 재취급(rehandling, reshuffling)이 발생하게 된다. 적하작업 시 장치장에서 재취급이 빈번히 발생하면 작업이 지연되므로 터미널 생산성 향상을 위해서는 재취급 발생을 가급적 줄여야 한다. 본 논문에서는 기계학습 기법을 적용하여 반입 컨테이너의 무게그룹을 보다 정확히 추정하는 방안을 제안한다. 또한 탐색을 통하여 분류기 생성에 관여하는 비용행렬(cost matrix)을 조정함으로써 재취급 발생을 줄일 수 있는 분류기(classifier)를 생성하는 방안을 함께 소개한다. 실험 결과 본 논문에서 제안하는 방안 적용 시 재취급 발생을 5$\sim$7% 정도 줄일 수 있음을 예상할 수 있었다.
측정은 초등 수학 교육에서 중요하지만, 초등학교에서 측정 영역을 의미 있게 지도하는 것은 쉽지 않다. 이에 본 연구에서는 한국, 일본, 싱가포르, 미국의 초등학교 수학 교과서에 제시된 들이와 무게의 지도 방안을 비교 분석하였다. 이를 위하여 크게 전반적인 학습 내용 및 지도 시기와 주요 학습 내용별 지도 방안을 비교하였고, 이 중 주요 학습 내용별 지도 방안은 측정의 학습 내용에 특화된 교수 학습 요소에 따라 단위의 필요성, 용어의 의미, 적절한 단위 선택, 적절한 측정 도구 선택, 계산의 필요성을 기준으로 분석하였다. 분석 결과, 4개 국가 모두 실생활 소재를 활용하고, 여러 가지 단위 사이의 관계를 중요하게 다루는 등 측정을 지도하는 일반적인 방향은 유사하였다. 반면 주요 학습 내용별 지도 방안 중 용어의 의미, 적절한 단위 선택, 적절한 측정 도구의 선택 등을 중심으로 주목할 만한 차이점을 확인하였다. 이와 같은 연구 결과를 바탕으로 들이와 무게의 지도 방안 및 차기 교과서 개발에 대한 시사점을 제안하였다.
본 연구의 목적은 무게 재기 단원을 지도한 교사가 겪는 어려움과 무게 재기 단원을 학습하는 학생들이 겪는 어려움을 탐색하는 데에 있다. 이를 위해 교사 대상으로는 설문지, 면담, 자기반성성찰지를, 학생 대상으로는 설문지, 단원평가지, 면담을 통하여 자료를 수집하였으며 반복적으로 자료를 검토하고 범주화 하였다. 분석한 자료는 과학교육 전문가 2명과 함께 검토하였다. 연구결과 교사들이 겪는 어려움은 교사들의 절차적 지식의 부족, 교육과정의 연계성 부족, 충분하지 못한 수업환경, 그리고 학생들의 조작능력 미숙으로부터 나타났다. 학생들이 겪는 어려움은 오개념의 발생, 이해하기 어려운 개념, 조작능력 미숙, 수학적 능력의 부족, 실제에 원리 적용의 어려움, 문제해결능력 부족으로부터 나타났다. 그리고 교사들은 학생들이 실험부분에서 더 어려움을 겪는다고 인식을 하였으나 학생들은 개념을 이해하는데 더 많은 어려움을 겪는 것으로 나타났다.
이 연구는 현직 교사 38명이 삼각형의 무게중심 수업을 관찰한 결과를 검토하여 교사들의 수업 분석 관점의 특징을 기술함으로써 수업 실행 지식과 관련된 논의에의 시사점을 얻고자 하였다. 이를 위해 교사들이 작성한 수업 관찰 결과를 교사 지식의 분석틀인 KQ에 비추어 해석하였으며, 삼각형의 무게중심 교수-학습에 대해 선행 연구에서 지적한 주요 이슈와 관련하여 분석하였다. 이로부터 무게중심 수업 분석에서 드러나는 교사 지식의 특징을 6가지로 요약하였으며, 교사들의 수업 실행 역량 개발과 관련된 몇 가지 시사점을 논의하였다.
본 논문에서는 베어링 고장진단 성능을 개선하기 위해 실시간 학습 방법을 제안한다. 기존 베어링 고장진단의 문제점은 학습되지 않은 상태에 대해 올바른 분류를 할 수 없다는 점이다. 제안한 4단계 실시간 학습 방법은 새로운 상태를 실시간으로 인지 및 학습하여 새로운 상태의 데이터를 올바르게 분류할 수 있다. 1단계에서는 학습 정보에서 각 클래스의 무게중심과 그 클래스 내 각 특징벡터 사이의 유클리디안 거리를 계산하여 각 클래스별로 거리의 최대값을 계산한다. 2단계에서는 새로 취득된 데이터의 특징벡터와 각 클래스의 무게중심 사이의 유클리디안 거리를 계산하고 각 클래스별 최대 허용 거리와 비교한다. 3단계에서는 새로 취득된 데이터들과 각 클래스 내 무게중심 사이의 거리가 각 클래스의 최대 허용 거리보다 모두 클 경우 새로운 상태의 데이터로 인지하고 새로운 상태 인지 횟수를 증가시킨다. 마지막 4단계에서는 새로운 상태 인지 회수가 10보다 클 경우 새로운 상태의 클래스를 생성하기 위해 새로운 상태로 인지된 10개의 데이터를 새로운 상태의 클래스로 지정하고 분류기를 재학습시킨다. 제안한 방법의 성능을 검증하기 위해 실제 베어링 결함 데이터를 사용하여 제안한 실시간 학습 방법의 효율성을 검증하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.