• Title/Summary/Keyword: 무게중심값

Search Result 114, Processing Time 0.034 seconds

Cluster Based Fuzzy Model Tree using Node Information (상호 노드 정보를 이용한 클러스터 기반 퍼지 모델트리)

  • Park, Jin-Il;Lee, Dae-Jong;Kim, Yong-Sam;Jeon, Myeong-Geun
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2007.11a
    • /
    • pp.235-238
    • /
    • 2007
  • 본 논문에서는 기존의 클러스터 기반 퍼지 모델트리에서 트리의 깊이에 따른 over-fitting으로 인한 훈련 및 검증데이터의 일관성 문제점을 해결하기 위해 상호 노드간의 정보를 고려하는 방법을 제안하고자 한다. 제안된 방법은 우선 입력과 출력변수의 속성을 고려한 퍼지 클러스터링에 의해 중심벡터를 계산한 후, 중심벡터들과 입력 속성간의 소속도를 이용하여 구간 분할된 영역별로 각각의 선형모델을 구축한다. 예측 단계에서는 입력된 데이터가 잎노드에 도달하는 노드간의 중심벡터와 입력 데이터간의 거리값에 따른 소속도를 계산한 후 최종적으로 무게 중심법을 이용하여 출력값을 예측하게 된다. 제안된 방법의 우수성을 보이기 위해 다양한 벤치마크 데이터를 대상을 실험한 결과, 기존의 클러스터 기반 퍼지 모델트리보다 향상된 성능을 보임을 알 수 있었다.

  • PDF

A Method of Hand Recognition for Virtual Hand Control of Virtual Reality Game Environment (가상 현실 게임 환경에서의 가상 손 제어를 위한 사용자 손 인식 방법)

  • Kim, Boo-Nyon;Kim, Jong-Ho;Kim, Tae-Young
    • Journal of Korea Game Society
    • /
    • v.10 no.2
    • /
    • pp.49-56
    • /
    • 2010
  • In this paper, we propose a control method of virtual hand by the recognition of a user's hand in the virtual reality game environment. We display virtual hand on the game screen after getting the information of the user's hand movement and the direction thru input images by camera. We can utilize the movement of a user's hand as an input interface for virtual hand to select and move the object. As a hand recognition method based on the vision technology, the proposed method transforms input image from RGB color space to HSV color space, then segments the hand area using double threshold of H, S value and connected component analysis. Next, The center of gravity of the hand area can be calculated by 0 and 1 moment implementation of the segmented area. Since the center of gravity is positioned onto the center of the hand, the further apart pixels from the center of the gravity among the pixels in the segmented image can be recognized as fingertips. Finally, the axis of the hand is obtained as the vector of the center of gravity and the fingertips. In order to increase recognition stability and performance the method using a history buffer and a bounding box is also shown. The experiments on various input images show that our hand recognition method provides high level of accuracy and relatively fast stable results.

An Analysis of Satisfaction with School Forest Using Triangular Fuzzy Number (삼각퍼지수를 활용한 학교숲 만족도 분석)

  • Lee, Seul-Gi;Jang, Jung-Sun;Jung, Sung-Gwan;You, Ju-Han
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.37 no.3
    • /
    • pp.1-10
    • /
    • 2009
  • Wooded areas that are a part of school campuses are one type of urban forest. Most schools located in an urban environment make an excellent setting for a forest in terms of location and area. These kinds of wooded spaces also make the city greener and healthier. As a place where students spend a great deal of time, schools can also be a venue for environmental education. The creation of wooded areas in schools currently has focused on the end result only; by ignoring student needs and participation, these areas have not had a significant influence on student environmental education. Previous studies based on questionnaire survey are significant in that they have quantified subjective qualitative data via Likert Scale. There has been, however, a problem in quantifying the more ambiguous subjective data. Therefore, this paper has attempted to investigate those factors that have an influence on student satisfaction with the wooded areas of their school campus using Fuzzy Theory with elementary school students in Gyeongsangbuk-do. A change was observed in terms of the ranking of arithmetic mean values of 'school peculiarity' and 'emotion evolution' and center of gravity, which has adopted Fuzzy Theory, proving that Fuzzy Theory could rationally objectify qualitative data such as human thoughts. In terms of the influential factors on the satisfaction with school forests(regression coefficient), 'school uniqueness(0.159)' was the highest, followed by 'many trees(0.142),' 'importance of nature(0.136)' and 'emotion evolution(0.130).' This paper may therefore be useful as basic data for objective questionnaire surveys and the development of school forests.

The Image Position Measurement for the Selected Object out of the Center using the 2 Points Polar Coordinate Transform (2 포인트 극좌표계 변환을 이용한 중심으로부터의 목표물 영상 위치 측정)

  • Seo, Choon Weon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.11
    • /
    • pp.147-155
    • /
    • 2015
  • For the image processing system to be classified the selected object in the nature, the rotation, scale and transition invariant features is to be necessary. There are many investigations to get the information for the object processing system and the log-polar transform which is to be get the invariant feature for the scale and rotation is used. In this paper, we suggested the 2 points polar coordinate transform methods to measure the selected object position out of the center in input image including the centroid method. In this proposed system, the position results of objects are very good, and we obtained the similarity ratio 99~104% for the object coordinate values.

RFID Indoor Location Recognition Using Neural Network (신경망을 이용한 RFID 실내 위치 인식)

  • Lee, Myeong-hyeon;Heo, Joon-bum;Hong, Yeon-chan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.3
    • /
    • pp.141-146
    • /
    • 2018
  • Recently, location recognition technology has attracted much attention, especially for locating people or objects in an indoor environment without being influenced by the surrounding environment GPS technology is widely used as a method of recognizing the position of an object or a person. GPS is a very efficient, but it does not allow the positions of objects or people indoors to be determined. RFID is a technology that identifies the location information of a tagged object or person using radio frequency information. In this study, an RFID system is constructed and the position is measured using tags. At this time, an error occurs between the actual and measured positions. To overcome this problem, a neural network is trained using the measured and actual position data to reduce the error. In this case, since the number of read tags is not constant, they are not suitable as input values for training the neural network, so the neural network is trained by converting them into center-of-gravity inputs and median value inputs. This allows the position error to be reduce by the neural network. In addition, different numbers of trained data are used, viz. 50, 100, 200 and 300, and the correlation between the number of data input values and the error is checked. When the training is performed using the neural network, the errors of the center-of-gravity input and median value input are compared. It was found that the greater the number of trained data, the lower the error, and that the error is lower when the median value input is used than when the center-of-gravity input is used.

A Study on the Methodology of Qualitative Reasoning Using Centroid-Oriented Composite Interval (무게중심 복합구간에 의한 정성 추론 기법에 관한 연구)

  • 박천경;김성근
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.7
    • /
    • pp.1351-1362
    • /
    • 1992
  • Qualitative models in model-based expert system needs modeling paradigm which provides intelligent control of modeling assumptions and extracts robust inferences without quantitative information about the system to be modeled. Qualitative reasoning methodologies has proved the property of the completeness but not the soundness to the corresponding quantitative model. We propose new methodology of qualitative reasoning by introducing the concept of Centroid-Oriented Composite Interval to improve the soundness problem. Arithmetic operations and equivalence classes were composed using this definition. Qualitative simulation results were compared to Kuipers's results and the improvements in the soundness problem is verified.

Development of an Automatic Seed Marker Registration Algorithm Using CT and kV X-ray Images (CT 영상 및 kV X선 영상을 이용한 자동 표지 맞춤 알고리듬 개발)

  • Cheong, Kwang-Ho;Cho, Byung-Chul;Kang, Sei-Kwon;Kim, Kyoung-Joo;Bae, Hoon-Sik;Suh, Tae-Suk
    • Radiation Oncology Journal
    • /
    • v.25 no.1
    • /
    • pp.54-61
    • /
    • 2007
  • [ $\underline{Purpose}$ ]: The purpose of this study is to develop a practical method for determining accurate marker positions for prostate cancer radiotherapy using CT images and kV x-ray images obtained from the use of the on- board imager (OBI). $\underline{Materials\;and\;Methods}$: Three gold seed markers were implanted into the reference position inside a prostate gland by a urologist. Multiple digital image processing techniques were used to determine seed marker position and the center-of-mass (COM) technique was employed to determine a representative reference seed marker position. A setup discrepancy can be estimated by comparing a computed $COM_{OBI}$ with the reference $COM_{CT}$. A proposed algorithm was applied to a seed phantom and to four prostate cancer patients with seed implants treated in our clinic. $\underline{Results}$: In the phantom study, the calculated $COM_{CT}$ and $COM_{OBI}$ agreed with $COM_{actual}$ within a millimeter. The algorithm also could localize each seed marker correctly and calculated $COM_{CT}$ and $COM_{OBI}$ for all CT and kV x-ray image sets, respectively. Discrepancies of setup errors between 2D-2D matching results using the OBI application and results using the proposed algorithm were less than one millimeter for each axis. The setup error of each patient was in the range of $0.1{\pm}2.7{\sim}1.8{\pm}6.6\;mm$ in the AP direction, $0.8{\pm}1.6{\sim}2.0{\pm}2.7\;mm$ in the SI direction and $-0.9{\pm}1.5{\sim}2.8{\pm}3.0\;mm$ in the lateral direction, even though the setup error was quite patient dependent. $\underline{Conclusion}$: As it took less than 10 seconds to evaluate a setup discrepancy, it can be helpful to reduce the setup correction time while minimizing subjective factors that may be user dependent. However, the on-line correction process should be integrated into the treatment machine control system for a more reliable procedure.

K-means clustering using a center of gravity for grid-based sample (그리드 기반 표본의 무게중심을 이용한 케이-평균군집화)

  • Lee, Sun-Myung;Park, Hee-Chang
    • Journal of the Korean Data and Information Science Society
    • /
    • v.21 no.1
    • /
    • pp.121-128
    • /
    • 2010
  • K-means clustering is an iterative algorithm in which items are moved among sets of clusters until the desired set is reached. K-means clustering has been widely used in many applications, such as market research, pattern analysis or recognition, image processing, etc. It can identify dense and sparse regions among data attributes or object attributes. But k-means algorithm requires many hours to get k clusters that we want, because it is more primitive, explorative. In this paper we propose a new method of k-means clustering using a center of gravity for grid-based sample. It is more fast than any traditional clustering method and maintains its accuracy.

Design and Implementation of Fuzzy PID Controller (Fuzzy PID 제어기 설계 및 구현)

  • 정동화;김성일;이상훈;신위재
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.10a
    • /
    • pp.457-460
    • /
    • 2004
  • 본 논문에서는 새로운 방법의 Fuzzy PID 제어기를 제안한다 우선 절대형 디지털 PID 제어기에서 두 가지 문제점이 있다. 첫째는 매 제어 주기마다 많은 데이터의 합을 구해야 하므로 계산시간이 많이 소요되고, 둘째는 이 계산을 위해 이전의 모든 데이터를 보관하고 있어야 되기 때문에 메모리가 많이 필요한 문제점이 있다. 위의 문제점을 개선하기 위해 속도형 디지털 PID 제어기를 사용한다. 제안한 제어기에서는 PIB 제어기의 목표 값과 현재 출력 값의 차인 크리스퍼(crisp) 출력 오차를 그대로 사용하지 않고 퍼지추론의 단계는 가지면서 Rule Table은 갖지 않는 특징이 있으며 출력 소속 함수에 두 변수의 관계와 범위에 의해 도식화된 영역에서 삼각형 무게 중심법으로 비퍼지화된 비선형 출력 값을 PID 계수에 인가하는 새로운 Fuzzy PID 제어기를 제안한다.

  • PDF

Calculate of flattened Centroid and Orientation in 3D tube Structure (3차원 튜브 구조의 평면 중심과 방향성 연산)

  • Kwak, Ho-young;Sung, Ui-hyeon;Huh, Jisoon
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2014.07a
    • /
    • pp.431-432
    • /
    • 2014
  • 본 논문 에서는 3차원 튜브 형태의 구조를 3차원 좌표를 갖는 점집합으로 추출했을 때, 이 점 집합에서 튜브를 관통하는 단위 벡터 및 방향성(orientation)을 구하는 알고리즘을 제안하였다. 이 알고리즘은 3차원 좌표를 정사영시킴으로써 2차원으로 차수를 낮추고, 그 처리를 간단하게 하였다. 또 내부를 구성하는 최대 넓이 폐곡선을 구성하는 점을 선택하는 방법을 제안하였다. 실험에서 제안한 방법은 정규화 된 튜브를 처리했을 때 중심(centroid) 및 방향성(orientation)을 의도한 값과 거의 동일하게 얻을 수 있었다.

  • PDF