• Title/Summary/Keyword: 뫼스바우어 분광법

Search Result 40, Processing Time 0.023 seconds

Study of the Nondestructive Test Method for the Embrittlement Evaluation of Nuclear Reactor Vessel Material by $M{\ddot{o}}ssbauer$ Spectroscopy ($M{\ddot{o}}ssbauer$ 분광법에 의한 원자로 용기재료의 비파괴적 중성자 조사평가에 대한 연구)

  • Jung, M.M.;Jang, K.S.;Yoo, K.B.;Kim, G.M.;Yoon, I.S;Hong, C.Y.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.20 no.3
    • /
    • pp.183-190
    • /
    • 2000
  • The purpose of this study is to evaluate the magnetic property change of the nuclear reactor vessel steel irradiated by fast neutrons using $M{\ddot{o}}ssbauer$ spectroscopy, and the effects of the defects produced by neutron irradiation on the changes using X-ray diffraction. The specimens, fabricated with the dimension of $23mm{\times}18mm{\times}70{\mu}m$, were irradiated by neutron fluence from $10^{12}n/cm^2\;to\;10^{18}n/cm^2$ at 343K. Throughout the experiments, it is understood that (1) the X-ray diffraction measurement shows that the change of crystal nature is started at the irradiation of $10^{16}n/cm^2$ and a crystal structure has been severely damaged at the irradiation over $10^{17}n/cm^2$, (2) the analysis of the $M{\ddot{o}}ssbauer$ spectra has shown that magnetic transition phenomena occur at the irradiation over $10^{17}n/cm^2$ and (3) both methods can be utilized as nondestructive test methods for the embrittlement evaluation of materials irradiated by fast neutrons.

  • PDF

Studies on Crystallographic and Magnetic Properties of the Sn0.9957Fe0.01O2 (Sn0.9957Fe0.01O2의 결정학적 및 자기적 성질에 관한 연구)

  • Li, Yong-Hui;Kim, Sam-Jin;Kim, Chul-Sung
    • Journal of the Korean Magnetics Society
    • /
    • v.20 no.5
    • /
    • pp.187-190
    • /
    • 2010
  • $Sn_{0.99}{^{57}Fe}_{0.01}O_2$ prepared by a sol-gel method, and studied by x-ray diffractometer, vibrating magnetometer, Superconducting quantum interference devices and M$\ddot{o}$ssbauer spectroscopy. the crystal structure were found to be a rutile tetragonal structure with space group $P4_2$/mnm, and oxygen deficiency are 5.6 % by Rietveld refinement. magnetization value were $M_s=1.95{\times}10^{-2}{\mu}_B/Fe$ at room temperature, and Curri-weiss temperature were and ${\theta}_{cw}$ = 18 k, measurement of VSM and SQUID, respectively. Mssbauer spectra of $Sn_{0.99}{^{57}Fe}_{0.01}O_2$ have been Sextet taken at various temperatures ranging from 4.2 K to RT, and isomer shift value $\delta$ = 0.18~0.36 mm/s of $^{57}Fe$ ion site all of the temperature range the state shows ferric.

Electrical and Magnetic Properties of Magnetite Powder during a Verwey Transition (Verwey 전이와 마그네타이트의 전기적 및 자기적 특성)

  • Yoon, Sunghyun
    • New Physics: Sae Mulli
    • /
    • v.68 no.12
    • /
    • pp.1302-1307
    • /
    • 2018
  • The crystallographic, electrical and magnetic behaviors of magnetite powder in the vicinity of its Verwey transition were investigated in this study. Magnetite was prepared by synthesizing a nanoparticle precursor and then annealing it at $800^{\circ}C$ for 1 h under a dynamic vacuum. Crystallographic and morphology analyses were done by using scanning electron microscope (SEM) and X-ray diffraction (XRD). The electrical and the magnetic properties were examined by using $M{\ddot{o}}ssbauer$ spectroscopy, vibrating sample magnetometer (VSM) and resistivity measurement. Both the magnetic moment and the resistivity showed discontinuous changes at the Verwey transition temperature ($T_V$). The temperature dependence of magnetic anisotropy constant showed a monotonic decrease with increasing temperature, with slight dip near $T_V$. $M{\ddot{o}}ssbauer$ spectra showed the superposition of two sextets, one from the tetrahedral (A) and the other from the octahedral (B) sites. The results revealed that identical charge states existed in the B site at temperatures both above and below $T_V$. A coordination crossover resulted in a transition from an inverse to a normal spinel at or close to $T_V$.

A Study on Crystallographic and Mossbauer Spectroscopic Properties of Magnetic Oxide (산화물 자성체의 결정학적 및 뫼스바우어 분광학적 특성 연구)

  • Park, Seung-Han
    • Korean Journal of Materials Research
    • /
    • v.9 no.7
    • /
    • pp.701-706
    • /
    • 1999
  • The crystal structure and magnetic properties of magnetic oxide system (F $e_2$ $O_3$)$_{5}$(A $l_2$ $O_3$)$_{4-x}$(G $a_2$ $O_3$)$_{x}$)SiO has been studied using X-ray diffraction and Mossbauer spectroscopy The changes of magnetic structure by the Ga ion substitution and the temperature variation have been investigated using Mossbauer spectroscopy, and the results are compared with those of the SQUIB measurements. Results of X-ray diffraction indicated that the crystal structures of the system change from a cubic spinel type to an orthorhombic via the intermediate region. This magnetic oxide system seems to be new kind of spinel type ferrites containing high concentration of cation vacancies. Various and complicated Mossbauer spectra were observed in the samples (x>0.2) at temperatures lower than room temperature. This result could be explained by freezing of the superparamagnetic dusters. On cooling and substitution, magnetic states of the system show various and multicritical properties. Unexpected dip in magnetization curves below 50K was observed in SQUID measurements. It was interpreted as an effect of spin canting including spin freezing or collective spin behavior.ior.r.

  • PDF

Mossbauer studies of LiFeO2 powders by sol-gel process (졸겔 합성에 의한 LiFeO2분말의 Mossbauer 연구)

  • An, Sung-Yong;Kim, Chul-Sung
    • Journal of the Korean Magnetics Society
    • /
    • v.14 no.2
    • /
    • pp.71-75
    • /
    • 2004
  • $\alpha$-LiFe $O_2$ powders have been prepared by a sol-gel method. The crystallographic and magnetic properties were characterized with a x-ray diffractometry, Mossbauer spectroscopy, and vibrating Samples magnetometry. The ${\gamma}$-LiFe $O_2$+LiFe$_{5}$ $O_{8}$ phase is observed in the Samples annealed at $600^{\circ}C$ for 3h in air and $\alpha$-LiFe $O_2$ phase is observed in the Samples annealed at $600^{\circ}C$ for 3 h in $H_2$(5%)/Ar(Bal.) gas atmosphere. The crystal structure of $\alpha$-LiFe $O_2$ is found to be cubic with a lattice a=4.193$\pm$0.0005 $\AA$. The Neel temperature of $\alpha$-LiFe $O_2$ is found to be 130$\pm$3 K.

Mössbauer Spectroscopic Study on Colorative Mechanism of Celadon Glaze (청자 유약 발색메카니즘에 대한 뫼스바우어 분광법에 의한 연구)

  • Kim, Jong-Young;No, Hyung-Goo;Jeon, A-Young;Kim, Ung-Soo;Cho, Woo-Seok;Kim, Kyung-Ja;Kim, Chin-Mo;Kim, Chul-Sung
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.1
    • /
    • pp.34-39
    • /
    • 2011
  • Systematic study on relationship between celadon coloring and glaze component was conducted by chromaticity analysis and M$\ddot{o}$ssbauer spectroscopic analysis. The chromaticity ($L^*$, $a^*$, $b^*$ values) and M$\ddot{o}$ssbauer analysis results were correlated to the amount of $Fe_2O_3$, $TiO_2$, MnO, and $P_2O_5$, which are the essential factors influencing celadon coloring. According to chromaticity analysis, celadon glaze color belongs to GY group when the addition of $TiO_2$ was 1.4%, whereas the color belongs to BG group when the addition of $TiO_2$ was 0.1%. For the GY group, the colors change from GY to YR with the decrease of brightness as the addition of $TiO_2$, MnO, and $P_2O_5$ increases. According to M$\ddot{o}$ssbauer analysis results, as the amount of divalent iron ion increases, the $a^*$ and $b^*$ values decrease, on the other hand, $L^*$ value increases. The ratio of divalent iron ion produced in reductive sintering process is found to be 80~95% in this study, which induces the increase of $L^*$ values in celadon glaze.

Systematic Study on Colorative Mechanism of Ancient Goryeo Celadon Glaze by Mossbauer Spectroscopy and Chromaticity Analysis (뫼스바우어 분광법과 색도 분석에 의한 고대 고려청자의 발색메카니즘 연구)

  • Jeon, A-Young;No, Hyung-Goo;Kim, Ung-Soo;Cho, Woo-Seok;Kim, Kyung-Ja;Kim, Jong-Young;Kim, Chin-Mo;Kim, Chul-Sung;Kang, Gyung-In
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.1
    • /
    • pp.66-71
    • /
    • 2012
  • In ancient Goryeo celadon, the effect of the chemical composition and ionic state of Fe on the color was evaluated by Mossbauer spectroscopy and Design of Experiment (DOE) analysis. The ancient celadon pieces excavated from the kiln sites in GangJin and Buan areas were analyzed by Mssbauer spectroscopy, chromaticity, and DOE analysis. The color of celadon was found to be mainly determined by that of glaze since variations of $L^*$, $a^*$, and $b^*$ values for the body were much smaller than those for the glaze. As $Fe^{2+}$/$Fe^{3+}$ in glaze increases, $L^*$ value increases, whereas $a^*$/$b^*$ value decreases, which is well consistent with the result on the synthetic glaze. As the amount of titanium increases in the glaze, the $a^*$ and $b^*$ values decrease; on the other hand, the $L^*$ value increases, which is well consistent with the result on the synthetic glaze.

A Study on Magnetic Properties of Amphiphilic Polymer Networks Nanocomposites by Mossbauer Spectroscopy (뫼스바우어 분광법에 의한 양친매성 고분자 망상구조 나노복합체의 자기적 성질 연구)

  • Yoon, In-Seop
    • Journal of the Korean Magnetics Society
    • /
    • v.20 no.6
    • /
    • pp.216-221
    • /
    • 2010
  • Magnetic nanocomposites contained iron oxide were synthesized by through cross-linking polymerization of dimethylacetamide (DMAc) solution and toluen solution on the amphiphilic polymer networks based on urethan acrylate nonionomer (UAN) precursor chains. For the study on microscopic structures and magnetic properties of the magnetic nanoparticles, FESEM and XRD and Mossbauer spectroscopy were used. The results investigated show that there are magnetic nanoparticles of $Fe_2O_3$ in samples and the magnetic nanocomposites contained iron oxide in polymer networks of UAN using DMAc solution are more smaller than using toluen solution. All of the Fe ions in the samples present $Fe^{3+}$ and the magnetic property of samples are paramagnetic by superparamagnetic effect at room temperature.

Mössbauer Study of Tb2Bi1GaxFe5-xO12(x=0, 1) (Tb2Bi1GaxFe5-xO12(x=0, 1)의 뫼스바우어 분광연구)

  • Park, Il-Jin;Kim, Chul-Sung
    • Journal of the Korean Magnetics Society
    • /
    • v.18 no.2
    • /
    • pp.67-70
    • /
    • 2008
  • $Tb_2Bi_1Ga_xFe_{5-x}O_{12}$(x=0, 1) fabricated by sol-gel and vacuum sealed annealing process. $Tb_2Bi_1Ga_xFe_{5-x}O_{12}$(x=0, 1) have been studied by x-ray diffraction(XRD), vibrating sample magnetometer, and $M\ddot{o}ssbauer$ spectroscopy. The crystal structures were found to be a cubic garnet structure with space group Ia3d. The determined lattice constants $a_0$ of x = 0, and 1 are $12.497\AA$, and $12.465\AA$, respectively. The distribution of gallium and iron in $Tb_2Bi_1Ga_xFe_{5-x}O_{12}$ is studied by Rietveld refinement. Based on Rietveld refinement results, the terbium and bismuth ions occupy the 24c site, iron ions occupy the 24d, l6a site, and nonmagmetic gallium ions occupy the 16a site. In order to verify the magnetic site occupancy of iron and gallium, we have taken $M\ddot{o}ssbauer$ spectra for $Tb_2Bi_1Ga_xFe_{5-x}O_{12}$(x=0, 1) at room temperature. From the results of $M\ddot{o}ssbauer$ spectra analysis, the absorption area ratios of Fe ions for $Tb_2Bi_1Fe_5O_{12}$ on 24d and 16a sites are 60.8 % and 39.2 %, respectively, and the absorption area ratios of Fe ions for $Tb_2Bi_1Fe_5O_{12}$ on 24d and 16a sites are 74.7 % and 25.3 %, respectively. It is noticeable that all of the nonmagnetic Ga atoms occupy the 16a site by vacuum annealing process.

Mössbauer Study of Crystallographic and Magnetic Properties in Vanadium Ferrite(VxFe3-xO4) Thin Films (바나듐 페라이트 박막의 결정구조 및 자기적 성질에 관한 뫼스바우어 분광학적 연구)

  • Park, Jae-Yun;Kim, Kwang-Joo
    • Journal of the Korean Magnetics Society
    • /
    • v.18 no.1
    • /
    • pp.19-23
    • /
    • 2008
  • The mixed ferrite $V_xFe_{3-x}O_4$(x=0.0, 0.15, 0.5, 1.0) thin films were prepared by sol-gel method. Their crystallographic and magnetic hyperfine properties have been studied using X-ray diffraction(XRD), X-ray photoelectron spectroscopy(XPS) and conversion electron $M\"{o}ssbauer$ spectroscopy(CEMS). The crystal structure is found to be cubic spinel throughout the series($x{\leq}1.0$), and the lattice parameter $a_0$ increases linearly with increasing V content. XRD, XSP and CEMS indicate that $V^{3+}$ substitution for $Fe^{3+}$ in B-site is superior to $V^{2+}$ substitution for $Fe^{2+}$ in B-site. It is noticeable that both quadrupole shift and hyperfine field decreases with increasing V composition, suggesting the change of local symmetry and accompanying line-broadening. The line-broadening on CEMS spectra can be explained by the distribution of magnetic hyperfine fields.