• Title/Summary/Keyword: 모암

Search Result 360, Processing Time 0.026 seconds

Genesis and Characteristics of the Soil Clay Minerals Derived from Major Parent Rocks in Korea II. Physical and Chemical Properties of the Whole Soils (한국(韓國)의 주요(主要) 모암(母岩)에서 발달(發達)된 토양점토광물(土壤粘土鑛物)의 특성(特性)과 생성학적(生成學的) 연구(硏究) II. 토양(土壤)의 이화학적(理化學的) 특성(特性))

  • Um, Myung-Ho;Kim, Tai-Soon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.24 no.2
    • /
    • pp.79-85
    • /
    • 1991
  • This study reports on the physical and chemical properties of the whole soils (<2mm) derived from five major rocks of granite, granite-gneiss, limestone, shale, and basalt in Korea. The properties were considered from the kind and frequency distribution of rock-forming minerals in the parent rocks. In particle size distribution, sand fractions were high in the soils from granite-gneiss, silt fractions mainly, in the residual soils from limestone, shale, and basalt. And clay fractions were particularly high in the colluvial soil from limestone and the old alluvial soil from basalt. pH, extractable Ca and Mg, and cation exchange capacity of the soils derived from limestone might be considered to be high due to the presence of sand and/or silt-sized calcite and dolomite inherited from the parent rocks. However, the soils derived from granite and granite-gneiss, being abundant in feldspars, quartz, and micas, showed a tendency to the contrary. A soil from shale composing of high quartz tended to have pH. extractable Ca, base saturation, and low exchangeable Al. In total element analysis, the soils derived from parent rocks with high contents of (i) orthoclase and micas, (ii) biotite, primary chlorite, and augite, and (iii) carbonate minerals and plagioclase as a rock-forming mineral showed a tendency to decrease the contents of $K_2O$, $Fe_2O_3$ and MgO, and CaO in comparison with those of their parent rocks.

  • PDF

Genesis and Characteristics of the Soil Clay Minerals Derived from Major Parent Rocks in Korea -I. Rock-forming Minerals and Mineralogical Characteristics of the Parent Rocks (한국(韓國)의 주요(主要) 모암(母岩)에서 발달(發達)된 토양점토(土壤粘土) 광물(鑛物)의 특성(特性)과 생성학적(生成學的) -I. 조암광물(造岩鑛物)과 광물학적(鑛物學的) 특성(特性))

  • Um, Myung-Ho;Lim, Hyung-Sik;Kim, Young-Ho;Um, Ki-Tae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.24 no.1
    • /
    • pp.1-9
    • /
    • 1991
  • A study was carried out to investigate the composition of rock-forming minerals and mineralogical characteristics of the five major parent rocks in Korea. The identification was done through the analyses of chemical. X-ray diffraction, thermal(DTA, TG), infrared spectroscopic, and microscopic methods. Among these methods, X-ray diffraction was considered to be the most rapid and effective way to identify minerals in the parent rocks. The main rock-forming minerals of the parent rocks were feldspars, quartz, and micas in granite and granite-gneiss, calcite and dolomite in limestone, quartz and calcite in shale, plagioclase and augite in basalt. A small amount of sesquioxides was identified as a accessory mineral by means of DTA from the parent rocks of Weoljeong series(granite) and Cheongsan series(granite-gneiss). The abrasion pH affecting the soil formation ranged from 7.5 to 8.4 in the parent rocks containing ferromagnesian minerals and carbonates. In the granite and granite-gneiss of which the main rock-forming minerals were feldspars and quartz with low content of biotite, the abrasion pH ranged from 6.2 to 6.4. In chemical composition of the parent rocks, Si, AI, and K oxides tented to increase with higher contents of quartz, feldspars, and muscovite, while Fe and Mg oxides with higher content of biotite, chlorite, amphiboles, and augite. Higher ignition loss in limestone and shale resulted in the release of $CO_2$ from calcite and/or dolomite.

  • PDF

Heavy Metal Concentrations of Rocks Soils and Plants from the Serpentine Area in Andong Kyungsngbuk-do (경상북도 안동 사문암지역의 모암, 토양 및 식물체 내 중금속 함량)

  • 민일식;송석환;김명희
    • Korean Journal of Environment and Ecology
    • /
    • v.13 no.3
    • /
    • pp.288-294
    • /
    • 1999
  • 경상북도 안동 사문암지역 및 부근의 화강암지역에 분포하는 암석, 토양 및 식물체에 함유되어 있는 원소의 농도를 조사한 결과는 다음과 같다. 본 조사지역에분포하는 사문암에 함유되어 있는 주요 전이원소 함량(Ni 1.164ppm. Cr 366ppm. Co 109ppm. Fe 7.48%) 및 다른 대부분의 전이원소(Sc, Mn, Cu)도 화강암보다 높았으며 우리나라 efms 지역의 사문암에 함유되어 있는 농도와 비교하여 볼 때 매우 유사한 경향을 보이고 있다. 사문아토양의 경우 암석풍화토양 및 산림토양 모두 화강암토양에 비해 Ni, Co, Cr, Fe, Sc, Mn, Cu, Mg, Zn 농도가 높았으며 Pb는 반대의 경향을 나타내었다. 토양내 원소 함량은 이들의 모암에 함유되어 있는 원소 함량의 변화와 일치하고 있으며 같은 모암인 경우 산림식생의 영향에 따라 면 원소들의 차이가 다소 나타났다. 식물체 내 원소의 농도는 토양의 농도에 비해 모두 낮았다. 참억새, 쑥, 소나무에 함유되어 있는 원소별 평균 농도는 모두 동일종간 대부분의 전이원소(Ni, Co, Cr, Fe) 및 As 농도가 화강암토양에 비해 사문암토양에서 더높았다 사문암토양에서 생육하는 식물체 3종 모두 대부분의 원소(Ni, Co, Cr. As, Sc, Fe) 함랴이 지하부에서 더 높았으며 Zn과 Mo는 지상부와 지하부의 농도 차이가 크게 나타나지 않았다 화강암토양에서 생육하는 식물체의 경우 원소별 지상부 및 지하부의 농도차이는 사문암토양에 비해 크지 않았다.

  • PDF

Petrology of enclave in the Mt. Wonhyo granite, Yangsan city (양산시 원효산 화강암에 산출되는 포획암에 대한 암석학적 연구)

  • 진미정;김종선;이준동;김인수;백인성
    • The Journal of the Petrological Society of Korea
    • /
    • v.9 no.3
    • /
    • pp.142-168
    • /
    • 2000
  • The granites distributed in the Kyongsang basin contain the rocks which are different from the host rocks, and they are known as magic microgranular enclaves. The genesis of the magic micro-granular enclaves can be divided into four types: (1) rock fragments from country rocks; (2) cumulation of the early crystals in host magma or disruption of early chilled borders; (3) magma mingling; and (4) restite. These enclaves can be easily found in the granites around Mt. Wonhyo, Yangsan city. They are ellipsoidal in shape, and have phenocrysts might be originated from the host rocks and sharp contacts with the granites. Under the microscope, textures such as oscillation zoning, horn-blende-mantled quartz, rapakivi texture, and acicular apatite are observed, and these indicate that the enclaves were originated from magma and then produced by chilling. The evidences showing that the enclaves were formed by magma mingling are: (1) petrographical characteristics; (2) similarity of the compositions between the rim of plagioclase in the enclave and plagioclase in the granite; (3) linear trends of the major elements; (4) total REE content of the enclaves; and (5) Textural and compositional variations from rim to core in zoned enclaves. The magic end member of the enclave is regarded as the aphyric basaltic andesite in Mt. Sinbul-Youngchui area. The granites around Mt. Wonhyo experienced the magma mingling process which was produced by the injection of mafic magma at about 70 Ma, during the crystal differentiation, and then continued the crystallization. The equigranular granites and the micrographic granites in the study area are considered as the results after the magma mingling process.

  • PDF

Effect of Borehole Fluid and Casing on the Borehole Electromagnetic Responses (공내수 및 케이싱이 시추공 전자탐사 반응에 미치는 영향)

  • Cho Seong-Jun;Kim Jung-Ho;Yi Myeong-Jong;Chung Seung-Hwan;Song Yoonho
    • Geophysics and Geophysical Exploration
    • /
    • v.2 no.2
    • /
    • pp.104-111
    • /
    • 1999
  • As a practical developing step of electromagnetic (EM) tomography technique, we quantitatively analyzed the effects of borehole fluid and casing on the borehole EM responses. The EM response turns out to have nothing to do with the property of the borehole fluid except in the close vicinity of the transmitter, which shows the wide perspective of the application of borehole EM. Single-hole responses in the presence of the steel casing throughly reflect those of the casing itself since its extremely high induction number or shallow skin depth. EM responses through steel casing do show the information of the host medium. In the near field region which corresponds to low frequency or the vicinity of the borehole, however, we can not separate the signal containing the information of the host from that of casing. Otherwise, the severe attenuation of energy in the casing at high frequencies renders the signal undetectable. The optimum frequency is, therefore, to be chosen to extract the information of the host considering both the property of the casing and the skin depth of the medium and the practical technique to determine the casing property through single-hole measurements is required.

  • PDF

Element Dispersion and Wallrock Alteration of TA26 Seamount, Tonga Arc (통가열도 TA26 해저산의 모암변질과 원소분산)

  • Yoo, Bong-Chul;Choi, Hun-Soo;Koh, Sang-Mo
    • Economic and Environmental Geology
    • /
    • v.44 no.5
    • /
    • pp.359-372
    • /
    • 2011
  • TA26 seamount, which is located at south part of Tonga arc, occurs widely hydrothermal plume and is area that sampled hostrock, hydrothermal ore and hydrothermal alteration rock for this study. Hostrocks are basalt and basaltic andesite. Altered rocks by hydrothermal solution consists of plagioclase, pyroxene, pyrite, ilmenite, amorphous silica, barite, smectite, iron sulfates, Fe-Si sulfates and Fe silicates. Gains and losses of major, trace and rare earth elements during wallrock alteration suggest that $K_2O$(+0.04~+0.45 g), $SiO_2$(-6.52~+10.56 g), $H_2O$(-0.03~+6.04 g), $SO_4$(-0.46~+17.54 g), S(-0.46~+13.45 g), total S(-0.51~+16.93 g), Ba(-7.60~+185078.62 g), Sr(-36.18~+3033.08 g), Ag(+54.83 g), Au(+1467.49 g), As(-5.80~+1030.80 g), Cd(+249.78 g), Cu(-100.57~+1357.85 g), Pb(+4.91~+532.65 g), Sb(-0.32~+66.59 g), V(-113.58~+102.94 g) and Zn(-49.56~+14989.92 g) elements are enriched from hydrothermal solution. Therefore, gained(enriched) elements(($K_2O$, $H_2O$, $SO_4$, S, total S, Ba, Sr, Ag, Au, As, Cd, Cu, Pb, Sb, V, Zn) represent a potentially tools for exploration of sea-floor hydrothermal deposits from the Tonga arc.

Preliminary Study on Candidate Host Rocks for Deep Geological Disposal of HLW Based on Deep Geological Characteristics (국내 심부 지질특성 연구를 통한 고준위방사성폐기물 심층처분 후보 암종 선행연구)

  • Dae-Sung Cheon;Kwangmin Jin;Joong Ho Synn;You Hong Kihm;Seokwon Jeon
    • Tunnel and Underground Space
    • /
    • v.34 no.1
    • /
    • pp.28-53
    • /
    • 2024
  • In general, high-level radioactive waste (HLW) generated as a result of nuclear power generation should be disposed within the country. Determination of the disposal site and host rock for HLW deep geological repository is an important issue not only scientifically but also politically, economically, and socially. Considered host rock types worldwide for geological disposal include crystalline rocks, sedimentary rocks, volcanic rocks, and salt dome. However, South Korea consists of various rock types except salt dome. This paper not only analyzed the geological and rock mechanical characteristics on a nationwide scale with the preliminary results on various rock type studies for the disposal host rock, but also reviewed the characteristics and possibility of various rock types as a host rock through deep drilling surveys. Based on the nationwide screening for host rock types resulted from literature review, rock distributions, and detailed case studies, Jurassic granites and Cretaceous sedimentary rocks (Jinju and Jindong formations) were derived as a possible candidate host rock types for the geological disposal. However, since the analyzed data for candidate rock types from this study is not enough, it is suggested that the disposal rock type should be carefully determined from additional and detailed analysis on disposal depth, regional characteristics, multidisciplinary investigations, etc.

Potential Study for the Sedimentary Exhalative Pb-Zn Mineralization in Dyusembay Area, Kazakhstan (카자흐스탄 듀셈바이지역의 퇴적분기형 연-아연 광화작용에 대한 잠재력 연구)

  • No, Sang-gun;Lee, Seung-han;Park, Ki-woong;Jeong, Hyeon-guk;Yun, Ji-seong;Kim, Sun-ok;Park, Maeng-eon
    • Economic and Environmental Geology
    • /
    • v.51 no.3
    • /
    • pp.213-222
    • /
    • 2018
  • Metasediment-hosted Pb-Zn mineralized zone has been found in Dyusembay of Kazakhstan. Its petrological properties, metal index, alteration index and redox-sensitivity are compared with those of SEDEX type deposit. Mineralization is developed along foliation of host rock (graphitic phyllite) and controlled by folds and faults; major ore minerals including pyrite, pyrrhotite, sphalerite, and galena are disseminated or interlayered with fine-grained quartz. The margin of the mineralized zone is metamorphosed accompanying sericite and chlorite. Hydrothermal brecciation and Pb-Zn mineralization formed in quartz-calcite stockworks are confirmed at the around of Maytyubin granitoid intrusions. The mineralization is classified into three types according to those of occurrence, paragenesis, chemical composition and isotopic characteristics. Type 1 whose fine-grained pyrite, pyrrhotite and sphalerite are formed in parallel yet discontinuous to well-developed foliations of the host rock; its geochemistry is similar to those of the earlier stage in SEDEX-type mineralization. In case of type 2, the ore minerals of which are concentrated being parallel to a foliation by regional metamorphism, and most of them associated with quartz and muscovite (${\pm}$ biotite) paragenetically. Type 3 is formed in the hydrothermal breccia zone whose ore minerals are controlled by foliation and breccia and developed in quartz ${\pm}$ calcite veins having a form such as stratification, stockwork or veinlets. Host rocks in the mineralized zone indicate homogeneous metamorphic grade and there is no specific alteration zonation. Also, all types (type 1, type 2, and type 3) represent similar REEs patterns, it can be interpreted that these are originated from a same source. Sulphides occurred in mineralized zone indicate a limited range of sulphur isotope values (type 2, ${\delta}^{34}S=-13.3{\sim}-11.7$‰; type 3, ${\delta}^{34}S=-13.9{\sim}-8.2$‰), and a result of geothermometry presents different temperature ranges: type 2($251{\pm}38^{\circ}C{\sim}277{\pm}40^{\circ}C$); type 3($360{\pm}2^{\circ}C$ to $537{\pm}29^{\circ}C$). It is estimated to be due to the effect of metamorphism and Maytyubin granitoid intrusions, respectively. In addition, ternary chart of thorium, scandium, and zircon for discrimination of tectonic setting and redox sensitivity using V/Mo values indicate that hydrothermal sediments put on reduction environment after precipitation, before being affected by metamorphism and intrusion activity. Geochemical data are plotted on a distal trend of SEDEX-type with discrimination plot using SEDEX index. As a result, petrological-geochemical properties demonstrate that Dyusembay Pb-Zn mineralized zone is comparable to distal-type of SEDEX deposit.

Occurrence and Chemical Composition of White Mica from Wallrock Alteration Zone of Janggun Pb-Zn Deposit (장군 연-아연 광상의 모암변질대에서 산출되는 백색운모의 산상 및 화학조성)

  • Bong Chul, Yoo
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.35 no.4
    • /
    • pp.469-484
    • /
    • 2022
  • The Janggun Pb-Zn deposit has been known one of the four largest deposits (Yeonhwa, Shinyemi, Uljin) in South Korea. The geology of this deposit consists of Precambrian Weonnam formation, Yulri group, Paleozoic Jangsan formation, Dueumri formation, Janggum limestone formation, Dongsugok formation, Jaesan formation and Mesozoic Dongwhachi formation and Chungyang granite. This Pb-Zn deposit is hydrothermal replacement deposit in Paleozoic Janggum limestone formation. The wallrock alteration that is remarkably recognized with Pb-Zn mineralization at this deposit consists of mainly rhodochrositization and dolomitization with minor of pyritization, sericitization and chloritization. Wallrock alteration is divided into the five zones (Pb-Zn orebody -> rhodochrosite zone -> dolomite zone -> dolomitic limestone zone -> limestone or dolomitic marble) from orebody to wallrock. The white mica from wallrock alteration occurs as fine or medium aggregate associated with Ca-dolomite, Ferroan ankerite, sideroplesite, rutile, apatite, arsenopyrite, pyrite, sphalerite, galena, quartz, chlorite and calcite. The structural formular of white mica from wallrock alteration is (K0.77-0.62Na0.03-0.00Ca0.03-0.00Ba0.00Sr0.01)0.82-0.64(Al1.72-1.48Mg0.48-0.20Fe0.04-0.01Mn0.03-0.00Ti0.01-0.00Cr0.00As0.01-0.00Co0.03-0.00Zn0.03-0.00Pb0.05-0.00Ni0.01-0.00)2.07-1.92 (Si3.43-3.33Al0.67-0.57)4.00O10(OH1.94-1.80F0.20-0.06)2.00. It indicated that white mica from wallrock alteration has less K, Na and Ca, and more Si than theoretical dioctahedral micas. The white micas from wallrock alteration of Janggun Pb-Zn deposit, Yeonhwa 1 Pb-Zn deposit and Baekjeon Au-Ag deposit, and limestone of Gumoonso area correspond to muscovite and phengite and white mica from wallrock alteration of Dunjeon Au-Ag deposit corresponds to muscovite. Compositional variations in white mica from wallrock alteration of these deposits and limeston of Gumoonso area are caused by mainly phengitic or Tschermark substitution mechanism (Janggun Pb-Zn deposit), mainly phengitic or Tschermark substitution and partly illitic substitution mechanism (Yeonhwa 1 Pb-Zn deposit, Dunjeon Au-Ag deposit and Baekjeon Au-Ag deposit), and mainly phengitic or Tschermark substitution and partly illitic substitution or Na+ <-> K+ substitution mechanism (Gumoonso area).

Mineralogy and Geochemistry of Fault Gouge in Pyrite-rich Andesite (함황철석 안산암 내 단층 비지의 광물학적 및 지구화학적 연구)

  • Park, Seunghwan;Kim, Yeongkyoo
    • Journal of the Mineralogical Society of Korea
    • /
    • v.27 no.4
    • /
    • pp.301-310
    • /
    • 2014
  • To investigate the role of fault gauge in the behavior of heavy metals caused by the acid rock drainage in the area of pyrite-rich andesite, XRD, pH measurement, XRF, SEM-EDS, ICP, and sequential extraction method were used. Bed rock consists of quartz, pyrophyllite, pyrite, illite, and topaz, but the brown-colored fault gouge is composed of quartz, illite, chlorite, smectite, goethite, and cacoxenite. The mineral composition of bed rock suggests that it is heavily altered by hydrothermal activity. The concentrations of heavy metals in the bed rock are as follows, Zn > As > Cu > Pb > Cr > Ni > Cd, and those in fault gouge are As > Zn > Pb > Cr > Cu > Ni > Cd. The concentrations of the heavy metals in the fault gouge are generally higher than those in the bed rock, especially for Pb, As, and Cr, which were more than twice as those in the bed rock. It is believed that the difference in the amount of heavy metals between the bed rock and the fault gouge is mainly due to the existence of goethite which is the main mineral composition in the fault gouge and can play important role in sequestering these metals by coprecipitation and adsorption. The low pH, caused by oxidation of pyrite, also plays significant role in fixation of those metals. It is confirmed that the fractions of labile (step 1) and acid-soluble (step 2), which can be easily released into the environment, were higher in the bed rock. Those fractions were relatively low in fault gauge, suggesting that fault gauge can play important role as a sink of heavy metals to prevent those ones from being released in the area where the acid rock drainage can have an influence.