• Title/Summary/Keyword: 모스 전계효과 트랜지스터

Search Result 5, Processing Time 0.016 seconds

Cross Sectional Thermal and Electric Potential Imaging of an Operating MOSFET (작동중인 모스 전계 효과 트랜지스터 단면에서의 상대온도 및 전위 분포 측정)

  • Kwon, Oh-Myoung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.7
    • /
    • pp.829-836
    • /
    • 2003
  • Understanding of heat generation in semiconductor devices is important in the thermal management of integrated circuits and in the analysis of the device physics. Scanning thermal microscope was used to measure the temperature and the electric potential distribution on the cross-section of an operating metal-oxide-semiconductor field-effect transistor (MOSFET). The temperature distributions were measured both in DC and AC modes in order to take account of the leakage current. The measurement results showed that as the drain bias was increased the hot spot moved to the drain. The density of the iso-potential lines near the drain increased with the increase in the drain bias.

Degradation Characteristics of Mobility in Channel of P-MOSFET's by Hot Carriers (핫 캐리어에 의한 피-모스 트랜지스터의 채널에서 이동도의 열화 특성)

  • 이용재
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.1
    • /
    • pp.26-32
    • /
    • 1998
  • We have studied how the characteristics degradation between effective mobility and field effect mobility of gate channel in p-MOSFET's affects the gate channel length being follow by increased stress time and increased drain-source voltage stress. The experimental results between effective and field-effect mobility were analyzed that the measurement data are identical at the point of minimum slope in threshold voltage, the other part is different, that is, the effective mobility it the faster than the field-effect mobility. Also, It was found that the effective and field-effect mobility. Also, It was found that the effective and field-effect mobility of p-MOSFET's with short channel are increased by decreased channel length, increased stress time and increased drain-source voltage stress.

  • PDF

Design and Numerical Analyses of SOI Trench-MOS Bipolar-Mode Field Effect Transistor (SOI 트렌치-모스 바이폴라-모드 전계효과 트랜지스터 구조의 설계 및 수치해석)

  • Kim, Du-Yeong;O, Jae-Geun;Han, Min-Gu;Choe, Yeon-Ik
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.5
    • /
    • pp.270-277
    • /
    • 2000
  • A new Lateral Trench-MOS Bipolar-Mode Field-Effect Transistor(LTMBMFET) is proposed and verified by MEDICI simulation. By using a trench MOS structure, the proposed device can enhance the current gain without sacrificing other device characteristics such as the breakdown voltage. The channel region of the proposed device is formed between the trench MOS structure. So the effect of the substrate voltage is negligible when compared with the conventional device which has a channel region between the gate junction and the buried oxide layer.

  • PDF

Development of Nanoscale Thermoelectric Coefficient Measurement Technique Through Heating of Nano-Contact of Probe Tip and Semiconductor Sample with AC Current (탐침의 첨단과 반도체 시편 나노접접의 교류전류 가열을 통한 나노스케일 열전계수 측정기법 개발)

  • Kim, Kyeongtae;Jang, Gun-Se;Kwon, Ohmyoung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.1 s.244
    • /
    • pp.41-47
    • /
    • 2006
  • High resolution dopant profiling in semiconductor devices has been an intense research topic because of its practical importance in semiconductor industry. Although several techniques have already been developed. it still requires very expensive tools to achieve nanometer scale resolution. In this study we demonstrated a novel dopant profiling technique with nanometer resolution using very simple setup. The newly developed technique measures the thermoelectric voltage generated in the contact point of the SPM probe tip and MOSFET surface instead of electrical signals widely adopted in previous techniques like Scanning Capacitance Microscopy. The spatial resolution of our measurement technique is limited by the size of contact size between SPM probe tip and MOSFET surface and is estimated to be about 10 nm in this experiment.

Simulations of Fabrication and Characteristics according to Structure Formation in Proposed Shallow Trench Isolation (제안된 얕은 트랜치 격리에서 구조형태에 따른 제작 및 특성의 시뮬레이션)

  • Lee, Yong-Jae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.1
    • /
    • pp.127-132
    • /
    • 2012
  • In this paper, the edge effects of proposed structure in active region for high voltage in shallow trench isolation for very large integrated MOSFET were simulated. Shallow trench isolation (STI) is a key process component in CMOS technologies because it provides electrical isolation between transistors and transistors. As a simulation results, shallow trench structure were intended to be electric functions of passive, as device dimensions shrink, the electrical characteristics influence of proposed STI structures on the transistor applications become stronger the potential difference electric field and saturation threshold voltage.