• Title/Summary/Keyword: 모세관 모델

Search Result 49, Processing Time 0.023 seconds

Adsorption Characteristics of Nitrogen in Carbonaceous Micropore Structures with Local Molecular Orientation (국부분자배향의 탄소 미세기공 구조에 대한 질소의 흡착 특성)

  • Seo, Yang Gon
    • Clean Technology
    • /
    • v.28 no.3
    • /
    • pp.249-257
    • /
    • 2022
  • The adsorption equilibria of nitrogen on a region of nanoporous carbonaceous adsorbent with local molecular orientation (LMO) were calculated by grand canonical Monte Carlo simulation at 77.16 K. Regions of LMO of identical size were arranged on a regular lattice with uniform spacing. Microporosity was predominately introduced to the model by removing successive out-of-plane domains from the regions of LMO and tilting pores were generated by tilting the basic structure units. This pore structure is a more realistic model than slit-shaped pores for studying adsorption in nanoporous carbon adsorbents. Their porosities, surface areas, and pore size distributions according to constrained nonlinear optimization were also reported. The adsorption in slit shaped pores was also reported for reference. In the slit shaped pores, a clear hysteresis loop was observed in pores of greater than 5 times the nitrogen molecule size, and in capillary condensation and reverse condensation, evaporation occurred immediately at one pressure. In the LMO pore model, three series of local condensations at the basal slip plane, armchair slip plane and interconnected channel were observed during adsorption at pore sizes greater than about 6 times the nitrogen molecular size. In the hysteresis loop, on the other hand, evaporation occurred at one or two pressures during desorption.

Performance Analysis of the Soft Ice-cream Maker Having Two Evaporators Operating at Different Temperatures (두개의 증발기가 장착된 소프트 아이스크림 제조기의 성능 해석)

  • Kim, Jeong-Sik;Kim, Nae-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.2
    • /
    • pp.517-522
    • /
    • 2013
  • Small size ice-cream maker has two evaporators having different evaporating temperatures of $4^{\circ}C$ and $-8^{\circ}C$. In such case, ice-cream maker system design becomes complicated because multiple capillary tubes affects one another. In this study, performance analysis was conducted for the soft ice-cream maker having two evaporators operating at different temperatures. The compressor was analyzed using efficiency models, the capillary tube was modeled assuming one-dimensional flow, the condenser and the evaporators were modeld based on UA-LMTD method. The refrigeration cycle simulation program was developed applying the enthalpy, pressure and mass balance on each component. Comparison of the test data with the simulated results for R404A revealed that evaporator temperatures of refrigerator and freezer agreed within $3^{\circ}C$.

Design and Development of Thermoacoustic Rdfrierator : I. Acoustic Analysis of Resonator and Prediction of Energy Conversion (열음향 냉동기의 설계 및 개발 : I. 내부공간의 음향해석 및 에너지 변환 예측)

  • Park, Chul-Min;Ih, Jeong-Guon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.15 no.5
    • /
    • pp.44-52
    • /
    • 1996
  • Acoustical characteristics of internal pipe structures and a loudspeaker of the thermoacoustic refrigerator are analyzed by using the transfer matrix method. The resonator system is dismantled into verious basic acoustic elements, and then linearized transfer matrices are serially combined with the dynamical system of linearized loudspeaker model, that the total system of thermoacoustic refrigerator can be analyzed in terms of frequency characteristics and acoustic field shape. Additionally, by using equations for energy flow through the capillary stack, the temperature distribution over the stack is numerically estimated. After expressing the acoustic work flow, thermoacoustic flow, and energy loss per unit length in a single capillary duct by using the transverse functional variations, overall energy flow rate and energy balance are obtained for the whole capillary stack. The final expression for energy flow through the stack is numerically evaluated by varying physical parameters obtained from the sound field analysis. After confirming good agreements between predicted and experimental results for the interior sound field of a refrigerator model, the thermoacoustic characteristics of Hofler's apparatus is analyzed by the proposed method and it is observed that the results agree well with Hofler's experimental results.

  • PDF

Performance analysis of a cold-air forced circulation type showcase (냉기 강제순환형 공랭식 쇼케이스 성능 해석)

  • Kim, Jeong-Sik;Kim, Nae-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.3
    • /
    • pp.1003-1010
    • /
    • 2013
  • In this study, a simulation program was developed, which predicts the performance of cold-air forced circulation type air cooled showcase. The showcase has an excellent display effect in addition to preserving the grocery. In the program, the compressor was analyzed using performance data supplied by the manufacturer and the capillary tube pressure drop was analyzed using a homogeneous model. The evaporator and condenser were analyzed by dividing the heat exchangers into small elements, where energy balance and appropriate heat transfer correlations were used. A showcase model with two 3/4 HP compressors, capillary tubes of 1.6 mm inner diameter, a fin-and-tube evaporator and condenser was tested, and the results are compared with the predicted values. It is shown that both evaporation and condensation temperatures are adequately predicted by the program.

Soil-Water Characteristic Curve of Sandy Soils Containing Biopolymer Solution (바이오폴리머를 포함한 모래지반의 흙-습윤 특성곡선 연구)

  • Jung, Jongwon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.19 no.10
    • /
    • pp.21-26
    • /
    • 2018
  • Soil-water characteristic curve, which is called soil retention curve, is required to explore water flows in unsaturated soils, relative permeability of water in multi-phase fluids flow, and change to stiffness and volume of soils. Thus, the understanding of soil-water characteristic curves of soils help us explore the behavior of soils inclduing fluids. Biopolymers are environmental-friendly materials, which can be completely degraded by microbes and have been believed not to affect the nature. Thus, various biopolymers such as deacetylated power, polyethylene oxide, xanthan gum, alginic acid sodium salt, and polyacrylic acid have been studies for the application to soil remediation, soil improvement, and enhanced oil recovery. PAA (polyacrylic acid) is one of biopolymers, which have shown a great effect in enhanced oil recovery as well as soil remediation because of the improvement of water-flood performance by mobility control. The study on soil-water characteristic curves of sandy soils containing PAA (polyacrylic acid) has been conducted through experimentations and theoretical models. The results show that both capillary entry pressure and residual water saturation dramatically increase according to the increased concentration of PAA (polyacrylic acid). Also, soil-water characteristic curves by theoretical models are quite well consistent with the results by experimental studies. Thus, soil-water characteristic curves of sandy soils containing biopolymers such as PAA (polyacrylic acid) can be estimated using fitting parameters for the theoretical model.

Application to Non-linear Viscoelastic Model on Capillary Extrusion of Rubber Compounds (고무복합체의 모세관 압출에서 비선형 점탄성 모델의 적용)

  • Choi, S.H.;Lyu, M.Y.;Kim, H.J.;Park, D.M.;Jun, J.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.209-212
    • /
    • 2007
  • Rubber compounds have high viscoelastic property. One of the viscoelastic behaviors during profile extrusion is the swelling of extrudate. In this study, die swell of rubber compounds at the capillary die have been investigated through an experiment and computer simulation. They have been performed using fluidity tester in experiment and commercial CFD code, Polyflow in computer simulation. Die swell of rubber compounds for relaxation time at several modes under same conditions with the experiment were predicted using non-linear differential viscoelastic model, Phan-Thien-Tanner (PTT) model. The simulation was analyzed compared with the experiment. Viscoelastic behaviors for pressure, velocity and shear rate distribution were analyzed at the capillary die. It is concluded that the PTT model successfully represented the amount of the optimal die swell of rubber compounds for relaxation time at different modes.

  • PDF

An Application of Non-linear Viscoelastic Model to Capillary Extrusion of Rubber Compounds (고무복합체의 모세관 압출에서 비선형 점탄성 모델의 적용)

  • Choi, S.H.;Lyu, M.Y.
    • Transactions of Materials Processing
    • /
    • v.16 no.4 s.94
    • /
    • pp.260-265
    • /
    • 2007
  • Rubber compounds have high viscoelastic property. One of the viscoelastic behaviors during profile extrusion is the swelling of extrudate. In this study, die swells of rubber compounds at the capillary die have been investigated through experiment and computer simulation. Experiments and simulations have been performed using fluidity tester and commercial CFD code, Polyflow respectively. Die swells of rubber compounds in a capillary die were predicted using non-linear differential viscoelastic model, Phan-Thien-Tanner(PTT) model for various relaxation times and relaxation modes. The results of simulation were compared with the experiments. Pressure and velocity distribution, and circulation flows at the comer of capillary die have been investigated through computer simulation. It is concluded that the PTT model successfully represented the amount of the die swell of rubber compounds for various relaxation times at different modes.

Computer Simulation of Die Extrusion for Rubber Compound Using Simplified Viscoelastic Model (간략화된 점탄성 모델을 적용한 고무 컴파운드의 압출 해석)

  • Kim, J. H.;Hong, J. S.;Choi, S. H.;Kim, H. J.;Lyu, M. Y.
    • Elastomers and Composites
    • /
    • v.46 no.1
    • /
    • pp.54-59
    • /
    • 2011
  • One of the viscoelastic flow behaviors during profile extrusion is the swelling of extrudate. In this study, die swell of rubber compound in the capillary die have been investigated through experiment and computer simulation. Simplified viscoelastic model and non-linear differential viscoelastic model such as PTT model have been used in the computer simulation. The simulation results have been compared with experimental data. Experiment and simulation have been performed using fluidity tester and commercial CFD code, Polyflow respectively. Die swells predicted by two models showed good agreement with experimental results. Pressure and velocity distribution, and circulation flow at the corner of reservoir have been well predicted by PTT model. Simplified viscoelastic model can not predict circulation flow at the corner of reservoir. However this model has an advantage in computation time compare with full viscoelastic model, PTT model.

Densities, Viscosities and Excess Properties of 2-Bromopropane - Methanol Binary Mixtures at Temperature from (298.15 to 318.15) K (298.15~318.15 K 에서 2-브로모프로판-메탄올 이성분 혼합물의 밀도, 점성도, 여분 성질)

  • Li, Hua;Zhang, Zhen;Zhao, Lei
    • Journal of the Korean Chemical Society
    • /
    • v.54 no.1
    • /
    • pp.71-76
    • /
    • 2010
  • The densities and viscosities of 2-bromopropane-methanol binary mixtures had been determined using an digital vibrating U-tube densimeter and Ubbelohde capillary viscometer respectively from (298.15 to 318.15) K. The dependence of densities and viscosities on temperature and concentration had been correlated. The excess molar volume and the excess viscosity of the binary system were calculated from the experimental density and viscosity data. The excess molar volumes were related to compositions by polynomial regression and regression parameters and total RMSD deviations were obtained; the excess viscosities was related to compositions by Redlich-Kister equation and regression coefficients and total RMSD deviation of the excess viscosity for 2-bromopropane and methanol binary system were obtained. The results showed that the model agreed very well with the experimental data.

Evaporation Rate in Protein Crystallization Via Vapor Diffusion can be Controlled through a Simple Multistep-concentration Setting in Capillaries

  • Lee, Min-Nyung;Chung, Yong-Je
    • Korean Journal of Crystallography
    • /
    • v.14 no.1
    • /
    • pp.35-38
    • /
    • 2003
  • A simple multistep-concentration setting in capillaries was used to control the water-evaporation rate in vapor-diffusion protein crystallization. In the method used, a variety of evaporation rate curves were obtained by using the secondary precipitant solution referred to as “regulatory solution”, which is not directly exposed to the protein solution. The curves were applied to the crystallization of lysozyme as a model protein. The results clearly showed that crystal growth is dependent on the evaporation rate. Especially, the decoupling curves in which precipitant concentration in protein solutions increases to a certain point and then decreases to the equilibrium concentration gave the best crystals.