• Title/Summary/Keyword: 모멘트방정식

Search Result 170, Processing Time 0.023 seconds

Adjusting Equation Method (or Relaxation Equation Method) and its Application to the Influence Line Analysis of Continuous Beams (조정방정식법(調整方程式法)(혹은 이완방정식법(弛緩方程式法))과 연속량(連續梁)에의 응용(應用))

  • Cho, Hyun Yung;Kim, Mi Ock
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.3
    • /
    • pp.487-493
    • /
    • 1994
  • Moment distribution procedure in the elastic analysis of rigid frames can be easily expressed with the adjusting moment equations(or relaxation equations) by using the concept of total adjusting moment at each joint after infinite cycles of moment distribution. Adjusting moment equations are a set of simultaneous equations from which the total adjusting moments at each joints after infinite cycles of physical relaxation can be determined. The form of simultaneous equations is a kind of relaxation equations and can be easily solved by the hand calculators. A unique and simplified procedure for the influence line analysis of a continuous beam is presented as an application of the method.

  • PDF

모멘트 법의 이론과 응용

  • 김정기
    • The Proceeding of the Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.2 no.4
    • /
    • pp.55-65
    • /
    • 1991
  • 본고의 목적은 선형 전자장 문제의 해를 구하기 위한 일반적이 절차에 대해 간단히 소개하고, 이것을 전자장 문제에 적용시켜 보는 것이다. 이것은 원시 함수 방정식이 행렬 방정식으로 유도되기 때문에, 이러한 과 정을 행렬 방법이라고도 한다. 수학적인 과정으로 행렬 방정식을 얻는 것을 모멘트 법이라고 한다. 종종 이런 과정을 근사 기법이라고도 한다. 그러나 이것은 해가 극한에서 수렴할때에는 틀린 명칭이다. 주어진 정확도를 위해서는 다른 해들과는 달리 계산시간이 많이 요구되는데, 예로 무한 멱급수 전개를 들 수 있다. 물론, 이 방법 은 정확하게 근사해를 구하는데 사용된다. 즉, 이 근사해는 극한에서 수렴하지 않는다. 모멘트 법은 전자장 문제를 다루기 위한 일반적인 절차이지만, 해를 구하는 과정은 특별한 문제에도 폭넓게 적용할 수 있다. 본고에서는 이 방법의 과정을 설명할 뿐만 아니라, 전자장 문제를 다루는 예를 들었다. 이런 예들을 가지고 유사한 문제의 해를 구할 수 있으며, 다른 유형의 문제들에 대해서는 적절하게 확장, 또 는 일부 수정을 하여 해를 구할 수 있다. 전자장 부분에서 예를 들었지만, 이 과정은 모든 종류의 전자장 문제에 적용할 수 있다.

  • PDF

Elastic Stability of Thin-Walled Arches subjected to Uniform Bending - Linear Bending Normal Strain Distribution -

  • Ryu, Hyo-Jin;Lim, Nam-Hyoung;Lee, Chin-Ok
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.2
    • /
    • pp.11-15
    • /
    • 2009
  • This paper is concerned with the elastic buckling of thin-walled arches that are subjected to uniform bending. Nonlinear strain-displacement relations with the initial curvature are substituted into the second variation of the total potential energy to obtain the energy equation including initial curvature effects. The approximation for initial curvature effects that the bending normal strain distribution is linear across the cross section is applied consistently in the derivation process. The closed form solution is obtained for flexural-torsional buckling of arches under uniform bending and, it is compared with the previous theoretical results.

Random Analysis of Rolling Equation of Motion of Ships Based on Moment Equation Method (모멘트 방정식 방법에 의한 횡요 운동 방정식의 램덤 해석)

  • 배준홍;권순홍;하동대
    • Journal of Ocean Engineering and Technology
    • /
    • v.6 no.2
    • /
    • pp.41-45
    • /
    • 1992
  • In this paper an application technique of moment equation method to solution of nonlinear rolling equation of motion of ships is investigated. The exciting moment in the equation of rolling motion of ships is described as non-white noise. This non-white exciting moment is generated through use of a shaping filter. These coupled equations are used to generate moment equations. The nonstationary responses of the nonlinear system are obtained. The results are compared with those of a linear system.

  • PDF

Stochastic Response of a System with Autoparametric Coupling (자기매계변수 연성을 갖는 응답의 통계적 특성)

  • 조덕상;김영종
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.13 no.4
    • /
    • pp.387-394
    • /
    • 2000
  • The nonlinear modal interaction of an autoparametric system under a broadband random excitation is investigated. The specific system examined is an autoparametric vibration absorber with internal resonance, which is typical of many common structural configurations. By means of Gaussian closure scheme the dynamic moment equations explaining the random responses of the system are reduced to a system of autonomous ordinary differential equations of the first and second moments. In view of equilibrium solutions of this system and their stability we examine the system responses. We could not find the destabilizing effect of damping, which was reported in References (18) and (20). The saturation phenomenon, which is well known in deterministic nonlinear system, did not take place lot this system subject to broadband random excitation.

  • PDF

A Study on Influence Line of Curved I-Girder Grid Bridge with Constant Cross Section (등단면 I-형 곡선 격자형교의 영향선에 관한 연구)

  • Chang, Byung Soon;Ryoo, Eun Yeol;Joo, Jae Hwan
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.4 s.33
    • /
    • pp.501-513
    • /
    • 1997
  • The general behavior of curved girder including the warping effects is formulated by series of differential equations postulated by Vlasov. In order to determine the maximum shear force, the maximum bending moment, the maximum pure torsion, the maximum warping torsion, and the maximum bimoment for the curved girder grid bridges, it is important to find the location of live load applied to the curved girder grid bridges, so that the influence line can be estimated. In this paper, the influence line of shear force, bending moment, pure torsion, warping torsion, and bimoment due to unit vertical load and unit torsional moment for curved I-girder grid bridges are obtained by using the finite difference method.

  • PDF

A Study on Lateral Torsional Budding of Arch Subjected to Pure Bending Moment (순수 휨모멘트를 받는 아치의 횡좌굴에 관한 연구)

  • Kim, Saeng Bin;Yoo, Chai Hong;Lee, Sung Chul
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.9 no.3
    • /
    • pp.13-19
    • /
    • 1989
  • A system of coupled differential equations governing the lateral-torsional buckling of thin-walled arches subjected to pure bending moment is presented. The governing differential equations are derived using incremental form of principle of virtual displacement based on updated Lagrangian procedure. The differential equations are solved for the critical end moments of arches with I section, and then comparative studies are made with existing solutions.

  • PDF

Moment Method of Log-Normal Size Distribution for Coagulation Problem - Constant Collision Kernel Model (대수정규분포의 모멘트 기법을 사용한 응집방정식의 해-상계수를 갖는 응집계수의 경우)

  • 박성훈;이승주;이규원
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 1999.10a
    • /
    • pp.194-196
    • /
    • 1999
  • 대기나 수용액 속에 부유 입자는 서로 충돌하여 합쳐져서 그 크기가 커지게 된다. 이러한 과정을 응집(Coagulation)이라고 하며, 이는 대기중 부유입자의 농도 및 크기분포의 변화, 구름 속에서의 빗방울형성 등에 매우 중요한 기작 중의 하나이다. 응집방정식은 일반적으로 비선형 편미적분 방정식으로 표현되어 일반 해를 구하는 것은 불가능하다. 이러한 이유로 응집방정식을 풀 때에는 수치 해석적인 방법이 주로 이용되고 있다.(Tolof, 1977; Gelbard and Seinfeld, 1978; Reed ea al., 1980; Mick et al., 1991).(중략)

  • PDF

Iterative Cumulant Moment Method for solution of Boltzmann Equation and its Application to Shock Wave Structure (반복적 Cumulant 모멘트 방법에 의한 Boltzmann 방정식의 해법과 충격파구조에 관한 연구)

  • Ohr, Young Gie
    • Journal of the Korean Chemical Society
    • /
    • v.42 no.4
    • /
    • pp.398-410
    • /
    • 1998
  • For non-linear solution of the Boltzmann equation, the cumulant moment method has been studied. To apply the method to the normal shock wave problem, we restricted ourselves to the monatomic Maxwell molecular gases. The method is based on the iterative approach developed by Maxwell-Ikenberry-Truesdell (MIT). The original MIT approach employs the equilibrium distribution function for the initial values in beginning the iteration. In the present work, we use the Mott-Smith bimodal distribution function to calculate the initial values and follow the MIT iteration procedure. Calculations have been carried out up to the second iteration for the profiles of density, temperature, stress, heat flux, and shock thickness of strong shocks, including the weak shock thickness of Mach range less than 1.4. The first iteration gives a simple analytic expression for the shock profile, and the weak shock thickness limiting law which is in exact accord with the Navier-Stokes theory. The second iteration shows that the calculated strong shock profiles are consistent with the Monte Carlo values quantitatively.

  • PDF