• Title/Summary/Keyword: 모르터

Search Result 340, Processing Time 0.021 seconds

A Study for Reducing the Slump Loss of Concrete Using High Range Water Reducing Admixture (고성능감수제(高性能減水劑)를 사용한 콘크리트의 유동성(流動性) 손실(損失)을 저감(低減)시키기 위한 연구(硏究))

  • Moon, Han Young;Kim, Ki Hyung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.3
    • /
    • pp.81-90
    • /
    • 1992
  • This study gives results of 1aboratory investigations to minimize the slump loss of concrete using high range water reducing admixture (HRWR). Various factors influencing on the slump loss such as cement type, HRWR type and dosage time are investigated. The acquired results indicated that 30 minutes delayed dosage of HRWR is very effective on reducing the slump loss though this tendency makes a difference to some extent according to cement and HRWR type. For the most part, the more usage of HRWR increases, the higher the slump loss occurs and concrete using ordinary portland cement has the highest slump loss and concrete using fly ash 20% replacement cement with HRWR of naphthalene type has the good effect on reducing the slump loss.

  • PDF

Experimental Studies on the Characteristics of Foaming Mortar(I)- Part 1 characteristics of bulk density and absorption rate - (기포모르터의 제특성에 관한 실험적 연구-제1보 밀도와 흡수율 특성)

  • 성찬용
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.30 no.1
    • /
    • pp.73-80
    • /
    • 1988
  • This study was performed to obtain the basic data which can be applied to use of foaming mortars. The results obtained were Summarized as follows; 1.At the mixing ratio of 1:1, the highest bulk densities were showed by foaming mortars, respectively. But, it gradually was decreased in poorer mixing ratio and more addition of foaming agent. The decreasing rates of bulk densities were increased in richer mixing ratio and more addition of foaming agent. 2.The bulk densities were decreased up to 38.8-55.9% by mix-foaming type and 9.7-23.6% by pre-foamed type than cement mortar. 3.At the mixing ratio of 1:1, the lowest absorption rates were showed by foaming mortars, respectively. But, it gradually was increased in poorer mixing ratio and more addition of foaming agent. The increasing rates of absorption rates were increased in richer mixing ratio and more addition of foaming agent. 4.Absorption rates when immersed in 72hours were showed up tp 3.41-5.85 times by mix-foaming type and 1.05- 1.S5times by pre -foamed type than cement mortar, it was significantly higher at the early stage of immersed time than cement mortar. 5.The correlations between bulk density and absorption rate were highly singnificant, respectively. The multiple regression equations of bulk density and absorption rate were computed depending on a fuction of mixing ratio and addition of foaming agent. it was highly significant respectively.

  • PDF

The Study on Synthesis and Application of Polymer Dispersion for Cement Modifier (II) - The Waterproofing Effect of Cement Mortar using Acrylic Copolymer - (시멘트 혼화용 폴리머 합성과 그 응용에 관한 연구(II) - 아크릴공중합체를 이용한 시멘트 모르터의 방수성 -)

  • Kim, Hong-Dai;Kim, Young-Geun;Kim, Seung-Jin;Park, Hong-Soo
    • Applied Chemistry for Engineering
    • /
    • v.7 no.4
    • /
    • pp.679-690
    • /
    • 1996
  • Acrylic copolymer was synthesized from 2-dimethylaminoethyl methacrylate and alkylmethacrylate containing long chain hydrocarbon group. To facilitate emulsification in water, acrylic copolymer was treated with acetic acid, and therefore acetated acrylic copolymer was produced. Acetated acrylic copolymer was perfectly emulsified in water and showed increased emulsion stability. Polymer as a cement dispersion agent(PDCM-PSD) was prepared by blending the newly synthesized acetates acrylic copolymer with sodium gluconate, oleic acid, and triethanolamine. The applicability of the blended polymer was examined, and it was found that the effects of dispersion and water-proof(0.3~0.5) were excellent.

  • PDF

Influence of Fine Aggregate Kinds on Fundamental Properties of Cement Mortar (잔골재 종류변화가 시멘트 모르터의 기초적 특성에 미치는 영향)

  • Kim, Seong-Hwan;Pei, Chang-Chun;Song, Seung-Heon;Cha, Cheon-Soo;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2006.05a
    • /
    • pp.85-88
    • /
    • 2006
  • This study investigated influence of fine aggregate types on fundamental properties of cement mortar. Test showed that concrete using lime stone crushed fine aggregate(L) exhibited the most favorable fluidity due to grain shape and particle distribution, and next was blending aggregate miting L and G, blending aggregate mixing L and N, granite crushed fine aggregate(G), natural fine aggregate(N) in an order. Concrete using N had the highest air content and L was the smallest value because of the effective filling performance by continuos particle distribution. Compressive, tensile and flexural strength of all concrete using L had the highest value due to the smallest value of air content. It is also found that concrete using L resulted in decrease of drying shrinkage length change ratio.

  • PDF

An Experimental Study on the Strength-Development Properties of Mortar with Discarded Bentonite Powder (폐 벤토나이트 분말을 흔입한 모르터의 강도 발현 특성에 관한 실험적 연구)

  • 정민수;김효열;안재철;강병희
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2003.05a
    • /
    • pp.23.2-29
    • /
    • 2003
  • As the bentonite is main material to prevent from collapse of drilling hole at underground excavation works, the quantity of bentonite is increasingly used on construction industry day by day. But, the discarded bentonite that is excessively used at underground excavation works causes various environmental trouble such as soil and water pollution etc. Therefore, this study aims to propose a foundamental report about pozzolan reaction of discarded Bentonite powder by heat-treatment and cooling as concrete mineral admixture. To find out the strength-development properties of mortar with discarded Bentonite powder by indirect cooling & cooling using of water after heat-treatment, the experiments such as flow test, and compressive strength test on curing age of mortar are excuted. As a result of this study, discarded Bentonite powder can be utilized as concrete mineral admixture by heat-treatment and especially, the strength-development properties of mortar mixing with discarded Bentonite powder is superior to the situation of $600^{\circ}C$.60min-cooling using of water.

  • PDF

Aggregate Criterion for Paved Track Considering Recycling of Railway Ballast (도상자갈 재활용을 고려한 포장궤도용 골재 기준)

  • Lee, Il-Wha
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.4
    • /
    • pp.481-487
    • /
    • 2009
  • On the paved track, the railway ballast is used as aggregate for the filling layer using the pre-packed concrete method. The condition of ballast as the paved track aggregate ensure that the compressive strength, particle distribution size for the pouring and surface clearance to increase the adhesive strength with mortar. It is profitable to recycle the existing railway ballast as a economical supply. In order to increase recycling characteristic, it is necessary to apply the similar criterion which does not exceed the conventional railway ballast criterion. Consequently, this paper was to investigate physical characteristics of existing ballast, particle size distribution, compressive and flexural strength, bearing capacity and filling capacity to prepare the aggregate's recycling. As a result, optimized aggregate criterion is suggested.

Design of Precast Circular Piers with Prestressing Bars (강봉으로 긴장한 프리캐스트 원형교각의 설계)

  • Shim, Chang-Su;Chung, Chul-Hun;Yoon, Jae-Young;Kim, Cheol-Hwan;Lee, Yong-Jin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.121-124
    • /
    • 2008
  • Fast construction of bridge substructures is a new trend of bridge design. A precast pier system with bonded prestressing bars was proposed. In this paper, quasi-static tests on precast prestressed piers were conducted to evaluate the seismic behavior of the precast piers with bonded prestressing bars. In order to strengthen the shear strength of the joints between column segments, steel tubes filled with mortar were used. Displacement ductility and energy dissipation capacity of the precast piers were evaluated. The suggested precast pier system showed better seismic performance than the required ductility. Based on the research results, an example bridge pier for light-railway lines was designed and design considerations were discussed.

  • PDF

Carbonation Properties of Recycled Cement Mortar made of Cementitious Powder from Concrete Waste (폐콘크리트 미분말을 이용한 재생시멘트 모르터의 중성화 특성)

  • Park, Cha-Won;Ahn, Jae-Cheol;Kang, Byeung-Hee
    • Journal of the Korea Institute of Building Construction
    • /
    • v.6 no.4 s.22
    • /
    • pp.61-68
    • /
    • 2006
  • Recently, there have been many studies about recycling cementitious powder from concrete waste(hereinafter referred to as waste powder), generated after recycle aggregate production. Previous studies showed that when the heating process of waste powder at $700^{\circ}C,\;Ca(OH)_2$ in paste is dehydrated making possible the restoration of hydraulic properties. Recycled cement with hydraulic properties restored is thought to be re-hydrated through the mechanism of hydration, which is almost similar in Portland cement. This clearly suggests that the hydrate of recycled cement is alkali in type. Like in general concrete, if recycled cement is used as a structural material, resistance performance against carbonation or neutralization by $CaCO_3$ in air probably would be most influential to the life of steel-reinforced concrete structure. Thus the purpose of this study is to make an experimental review on chemical properties of recycled cement, manufactured with concrete waste as base material, and investigate the durability of concrete using recycled cement through evaluating the cement's performance of resistance to carbonation in accordance with its accelerating age. Based on its results, further, the study seeks to provide basic information about ways of utilizing recycled cement.

Performance Evaluation for Deteriorated Masonry of Military Facilities (조적조 노후 군시설의 성능평가기준)

  • Yang, Eun-Bum;Shin, Jong-Hyun;Lee, Chan-Sik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.7 no.3
    • /
    • pp.167-174
    • /
    • 2003
  • Military facilities with masonry have a great portion in the whole military facilities. But lots of them have been used for more than 20 years, the degree of deterioration of the facilities are serious. Futhermore, as insufficient budget for the facilities maintenance and poor maintenance, the performance of the aged masonry facilities have continually decreased. We suggest a structural performance assessment criteria for the military facility through literature review, interview with experts and questionnaire. The major assessment factors for the structural performance include the inclining and sinking degree of the facilities, durability of materials and resisting force of the structural members.

Effect of the Curing Temperature on Autogenous Shrinkage of the High Strength Mortar incorporating Mineral Admixtures (양생온도가 혼화재 치환 고강도 모르터의 응결 및 자기수축에 미치는 영향)

  • Han, Min-Cheol
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.4
    • /
    • pp.127-133
    • /
    • 2012
  • In this paper, tests were carried out to monitor the effect of the curing temperature on autogenous shrinkage of the high strength cement mortar incorporating silica fume, blast furnace slag and fly ash ranged from 10%~30% by mass of cement. The curing temperatures were varied from $5^{\circ}C$ to $35^{\circ}C$, respectively. According to results, the setting time exhibited to delay with increase of admixture and drop of temperature. As for the effect of curing temperature on autogenous shrinkage, the increase of SF and BS resulted in an increase of autogenous shrinkage, while the use of FA decrease. The higher the curing temperature is, the greater the autogenous shrinkage is. This is due to the accelerated hydration rate of cement. It is found that the maturity does not consider the effect of curing temperature on autogenous shrinkage.

  • PDF