• Title/Summary/Keyword: 모르타르

Search Result 1,527, Processing Time 0.028 seconds

Evaluation of the Basic Properties of Materials for Application of Functional Plaster Mortar (기능성 미장 모르타르의 현장 적용을 위한 재료별 기초 물성에 관한 평가)

  • Cho, Do-Young;Kim, Gyu-Yong;Miyauchi, Hiroyuki
    • Journal of the Korea Institute of Building Construction
    • /
    • v.12 no.2
    • /
    • pp.152-160
    • /
    • 2012
  • The development of building must be accompanied with construction technology and performance of materials. In particular, wet processes have a high level of dependence on manpower and a low level of diversification of materials used. This study aimed to determine the applicability of various materials for wet process, mechanized construction and eco-friendly building materials through a comparison with dry premixed mortar. As a result, it was found that resin plaster and gypsum plaster's strength is lower than that of dry cement mortar, but their mechanization application, construction simplification, smoothness and bond strength are higher than that of dry cement mortar. And estimate that is valid as workability, bonding strength, eco-friendly building material in occasion of gypsum plaster.

Evaluation on Stiffness of High-strength Mortar-filled Sleeve Bar Splice Under Cyclic Loading (반복하중이 작용하는 고강도 모르타르 충전식 슬리브 철근이음에 대한 강성 평가)

  • Kim, Hyong Kee;Chung, Goo Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.1
    • /
    • pp.85-93
    • /
    • 2013
  • In order to make a more reasonable evaluation on the stiffness of the high-strength mortar-filled sleeve bar splices under cyclic loading, we investigated and analyzed the existing experiment data of 106 full-sized reinforcing bar splices with test variables such as compressive strength of mortar, development length of reinforcement and sleeve type, etc. The following were found: 1) If mortar and the reinforcement development length with $f_{g^*}$(L/d) of more than 340 is used, the cast iron sleeve bar splices for SD350 and SD400 will have the stiffness of higher than A class of the AIJ code. 2) If mortar and the reinforcement development length with $f_{g^*}$(L/d) of more than 400 is used, the cast iron sleeve splices and pipe sleeve splices for SD500 will have the stiffness of higher than A class of the AIJ code.

Effect of Properties of Repair Mortars According to Pre-mixing Methods (원료 사전 혼합 방법에 따른 보수 모르타르의 물성에 대한 영향)

  • Shin, Dong-Cheol;Kang, Yong-Hak
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.4
    • /
    • pp.104-109
    • /
    • 2017
  • It is important to keep the distribution of the raw material mixture constant, in order to maximize the effect of the pre-mix type repair mortar, and it is also necessary to increase the performance of the mixer in order to minimize the deviation of the product. In this study, three kinds of mixer used in production sites were used to make repair mortar and the properties of each mortar were examined. As a result, it is confirmed to the difference in properties of pre-mix type repair mortar differ depending on the type of mixer, and the fluidized zone mixer showed relatively good results. In addition, it is preferable to set the mixing time to about 10 minutes to 15 minutes in order to ensure workability and optimum physical properties.

A Fundamental Study for Development of Corrosion Inhibitor Repair Mortar (저탄소 방청 보수모르타르 개발을 위한 기초연구)

  • Jung, Jae-Eun;Yang, Keun-Hyeok;Go, Jeung-Wan;Yun, In-Gu
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.2 no.2
    • /
    • pp.93-99
    • /
    • 2014
  • The present study prepared 13 mixes to examine fundamental mixture proportions of corrosion inhibitor repair mortars. The mortar mixes were classified into three groups according to the selected test variables which are the substitution level of polymer for Group 1, ground granulated blast-furnace slag (GGBS) and fly ash (FA) for Group 2, and corrosion inhibitor for Group 3. Based on the test results, the optimum substitution levels of GGBS and FA could be recommended as 10% and 20%, respectively, though 1-day strength of mortar significantly decreased with their substitution. Furthermore, the appropriate substitution level of corrosion inhibitor was considered to be less than 1.5%. The flexural strength of mortar tested was higher than the predictions obtained from ACI 318-11 equation. The shrinkage strain of mortar was also conservative after an age of around 10 days compared with the predictions of ACI 209.

Evaluation of Wet-Mixed High Strength Sprayed Polymer Mortar for Fire Resistance (내화용 고강도 습식 스프레이 폴리머 모르타르의 화재 저항성 평가)

  • Won, Jong-Pil;Choi, Seok-Won;Park, Chan-Gi;Park, Hae-Kyun
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.4 s.94
    • /
    • pp.559-568
    • /
    • 2006
  • The purpose of this study is to evaluate the mechanical performance and fire resistance of wet-mixed high strength sprayed polymer-modified mortar in order to protect tunnel lining system which are in the event of fire disaster. Since the current commercial fire-resistant materials reproduce the low strength issue of mortar, this study aims to provide an enhanced fire-resistant mortar with a proper strength. Normally, a large temperature gradient phenomenon arise in the vicinity of free surfaces which are fully exposed in the event of persistent flame. Thereby, the determination of optimal cover depth of wet-mixed high strength sprayed polymer-mortar(WHSPM) is important for fire-resistance of tunnel lining system. With comparison of current commercial fire-resistance materials and WHSPM, the experimental result of WHSPM shows the better fire-resistant performance than the others. In addition, the cover limitation should be controlled by minimum 4cm depth in order to avoid fire-induced damage.

Seismic Performance Evaluation of Reinforced Concrete Columns by Applying Steel Fiber-Reinforced Mortar at Plastic Hinge Region (소성힌지부 강섬유 혼입 모르타르 적용 철근콘크리트 기둥의 내진성능평가)

  • Cho, Chang-Geun;Han, Sung-Jin;Kwon, Min-Ho;Lim, Cheong-Kweon
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.3
    • /
    • pp.241-248
    • /
    • 2012
  • This paper presents a reinforced concrete composite column method in order to improve seismic performance of reinforced concrete column specimens by selectively applying steel fiber-reinforced mortars at the column plastic hinge region. In order to evaluate seismic improvement of the newly developed column method, a series of cyclic load test of column specimens under a constant axial load was investigated by manufacturing three specimens, two reinforced concrete composite columns by applying steel fiber-reinforced mortars at the column plastic hinge region and one conventional reinforced concrete column. Both concrete and steel fiber-reinforced mortar was cast-in placed type. From cyclic load test, it was found that the newly developed steel fiber-reinforced columns showed improved seismic performances than conventional reinforced concrete column in controlling bending and shear cracks as well as improving seismic lateral load-carrying capacities and lateral deformation capacities.

Properties of Mortar Adhered to the Recycled Coarse Aggregate in Cement Paste (시멘트풀 속에서의 순환굵은골재 부착모르타르의 성상변화에 관한 연구)

  • Moon, Dae-Joong;Choi, Jae-Jin
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.1
    • /
    • pp.95-102
    • /
    • 2011
  • Vicker's hardness and pore size distribution of mortar adhered to the recycled coarse aggregate were tested according to the strength level of original concrete of recycled coarse aggregate to find the change of mortar adhered to the recycled coarse aggregate in cement paste. The strength levels of original concrete of recycled coarse aggregate were 25.5MPa, 41.7MPa and 60.1MPa and the aggregates were used at the state of saturated surface dry condition and oven dry condition. The results of this experimentation indicated that the mean value of Vicker's hardness was increased according to age and strength of original concrete of recycled aggregate. Porosity of $100nm{\sim}10{\mu}m$ size was reduced and porosity of 6nm~100nm size was increased in cement paste.

  • PDF

Improving Quality of Eco-Mortar Incorporating Blast Furnace Slag and Recycled Aggregate Depending on Replacement Gypsum and Cement (고로슬래그 미분말과 순환잔골재를 사용하는 친환경 모르타르에 탈황석고 및 시멘트에 의한 품질향상)

  • Baek, Byung Hoon;Han, Cheon-Goo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.15 no.2
    • /
    • pp.193-199
    • /
    • 2015
  • As a solution of both environmental issue of reducing carbon dioxide emission and sustainable issue of exhausting natural resources, in concrete industry, many research on recycling various by-products or industrial wastes as the concrete materials has been conducted. The aim of this research is feasibility analysis of additional reaction with ordinary Portland cement and flue gas desulfurization gypsum based on the blast furnace slag and recycled fine aggregate based mortar to achieve the normal strength range. Consequently, in the case of mortar replaced 10% FGD and 30% OPC for BS, 80% of plain OPC mortar's compressive strength was achieved. Furthermore, when the water-to-binder ratio is decreased to keep the practically similar level of flow, it is expected to be achieve the equivalent compressive strength to plain OPC mortar.

Effect of Calcium Sulfate Dihydrate (Gypsum) on the Fundamental Properties of Slag-based Mortar (이수석고가 고로슬래그 미분말 베이스 무시멘트 모르타르의 기초물성에 미치는 영향)

  • Baek, Byung Hoon;Han, Cheon Goo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.14 no.3
    • /
    • pp.252-258
    • /
    • 2014
  • With the vision of 'a low carbon green develop' various industrial by-products were used as replacement of cement, in order to reduce $CO_2$ emissions from the manufacturing process of cement. Blast furnace slag is one of the industrial by-products. Due to the similar chemical compositions to ordinary Portland cement, blast furnace slag have been widely used in concrete with minimum side effects. Hence, in recent years, alkali activated slag-based composites are extensively studied by many researchers. However, the alkali activator can cause a number of problems in practice. Therefore, in this study, an alternative way of activating the slag was investigated. To activate the slag without using an alkali activator, calcium sulfate dihydrate was chosen and mixed with natural recycled fine aggregate. Fundamental properties of the slag-based mortar were tested to evaluate the effect of calcium sulfate dihydrate.

Effect of the Replacement Ratio and Sources of Blast Furnace Slag Powder on the Fundamental Properties of Recycled Fine Aggregates Based Mortar (고로슬래그 미분말의 산지 및 치환율 변화가 순환잔골재 사용 시멘트 모르타르의 특성에 미치는 영향)

  • Han, Cheon-Goo;Zhao, Yang
    • Journal of the Korea Institute of Building Construction
    • /
    • v.15 no.3
    • /
    • pp.257-263
    • /
    • 2015
  • In this study, the quality of blast furnace slag and the engineering properties of recycled aggregate based mortar with variable replacement of blast furnace slag have been focused. Blast furnace slag(BS) manufactured in various areas in Korea were prepared for this study. For the investigation results, 4 types(among the all of 9 types) of the experimental results were identified as below the standard level when using blast furnace slag chosen from different factories. Especially the particle size of the blast furnace slag was considered as the largest problem. When using BS in the recycled aggregates based mortar, the increase amount of blast furnace slag, increased the fluidity but delayed the setting time and decreased strength at early age. Based on the relationship of the amount of BS and the engineering properties of mortar, this study found that the amount of $SO_3$ and L.O.I affect the setting time, 3 days strength and 91 days strength to the certain standard level.