• Title/Summary/Keyword: 모드 간섭

Search Result 275, Processing Time 0.029 seconds

A Study on Optical Coherence Tomography System by Using the Optical Fiber (광섬유를 이용한 광영상단층촬영기 제작에 관한 연구)

  • 양승국;박양하;장원석;오상기;이석정;김기문
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.18 no.4
    • /
    • pp.34-40
    • /
    • 2004
  • In this paper, we have studied the OCT(Optical Coherence Tomography) system which has been advantages of high resolution, 2-D cross-sectional images, low cost and small size configuration. The characteristics of light source determine the resolution and coherence length. The light source has a commercial SLD with a central wavelength of 1,285 ill11, 35.3 nm(FWHM). The optical delay line is necessary to make equal with the optical path length to scattered light or reflected light from a sample. In order to make equal the optical path length, the stage that is attached to a reference mirror is controled by a step motor. And the interferometer is configured with the Michelson interferometer by using a single mode fiber, and the scanner can be focused on the sample by using a reference ann Also, the 2-dimension cross-sectional images were measured with scanning the transverse direction of the sample by using a step motor. After detecting the internal signal of lateral direction, a scanner is moved to obtain the cross-sectional image of 2-dimension by using step motor. A photodiode, which has high detection sensitivity and excellent noise characteristics has been used. The detected small signal has a noise and interference. After filtering and amplifying the signal, the output signal is demodulated the waveform And then, a cross-sectional image is seen through converting this signal into a digitalized signal by using an AID converter. The resolution of the sample is about 30${\mu}{\textrm}{m}$, which corresponds to the theoretical resolution. Also, the cross-sectional images of onion cells were measured in real time scheme.

A Study on the Optimization of the Transmission Method for COMS Satellite Control Signal (통신해양기상위성의 위성 관제 신호 전송 방식의 최적화 연구)

  • Kim, Yeong-Wan;Yang, U-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.11
    • /
    • pp.47-53
    • /
    • 2006
  • The power losses due to modulation index for multi-modulation scheme were analyzed under various transmission mode of satellite control and the necessary satellite link margin for transmission mode were proposed in this paper On the basis of the analyses for interference between the transmission signals and threshold of satellite control signal receiver, the optimal subcarrier signals were proposed for satellite range measurement methods, respectively. The subcarrier signal of 12 kHz or 14 kHz is proper for telecommand using the ESA method, and 16 kHz for telecommand signal using the GSTDN method. On the other hand, the telemetry subcarrier of 65.536 kHz is a proper in the viewpoint of receiver threshold value.

Performance Analysis of Fractional Bandwidth Mode Detection for a Cognitive Radio Based OFDM System (인지 라디오 기반 OFDM 시스템을 위한 부분대역모드 검출 기법의 성능 분석)

  • Lee, Ji-Hye;Wang, Jin-Soo;Kim, Yun-Hee;Yoon, Seok-Ho;Song, Lick-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.2C
    • /
    • pp.238-245
    • /
    • 2010
  • For orthogonal frequency division multiplexing (OFDM) systems sharing the spectrum with narrow band primary devices, a fractional bandwidth (FBW) mode has been proposed recently to reduce the interference to the primary users. The FBW mode divides the total OFDM bandwidth into subbands and activates (or deactivates) a subset of the subbands according to the result of spectrum sensing. In this paper, we analyze the detection error probability of FBW mode information which is delivered by the sequence embedded in the preamble and evaluate the performance in wireless regional area network environments. The results show that the detection probability derived analytically estimates the actual value from simulation adequately and that a low detection error probability less than $10^{-3}$ is obtained at a low signal-to-noise power ratio.

A Concurrent MCMA-DD Equalizer with Initial Convergence Detection (초기 수렴 검출 기능을 갖는 동시 MCMA-DD 등화기)

  • Kim, Chul-Min;Choi, Ik-Hyun;Oh, Kil-Nam;Choi, Soo-Chul
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.2
    • /
    • pp.477-480
    • /
    • 2005
  • CMA-DD is proposed to improve the steady-state performance of CMA and its performance is depending on switching time between two modes of operation. Castro et al. who proposed a concurrent equalizer for solving problem of CMA-DD, which reduced the sensibility of switching time. However, concurrent algorithm has a problem that it keeps working after convergence. In this paper, we propose concurrent MCMA-DD equalizer combined modified CMA(MCMA) and DD mode for making better concurrent algorithm. The proposed equalizer is better than previous algorithm in convergence speed and steady-state performance. Also, the proposed algorithm decides optimum switching time using residual ISI of the equalizer output.

  • PDF

Evaluation of Space-based Wetland InSAR Observations with ALOS-2 ScanSAR Mode (습지대 변화 관측을 위한 ALOS-2 광대역 모드 적용 연구)

  • Hong, Sang-Hoon;Wdowinski, Shimon
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_1
    • /
    • pp.447-460
    • /
    • 2022
  • It is well known that satellite synthetic aperture radar interferometry (InSAR) has been widely used for the observation of surface displacement owing to earthquakes, volcanoes, and subsidence very precisely. In wetlands where vegetation exists on the surface of the water, it is possible to create a water level change map with high spatial resolution over a wide area using the InSAR technique. Currently, a number of imaging radar satellites are in operation, and most of them support a ScanSAR mode observation to gather information over a large area at once. The Cienaga Grande de Santa Marta (CGSM) wetland, located in northern Colombia, is a vast wetland developed along the Caribbean coast. The CGSM wetlands face serious environmental threats from human activities such as reclamation for agricultural uses and residential purposes as well as natural causes such as sea level rise owing to climate change. Various restoration and protection plans have been conducted to conserve these invaluable environments in recognition of the ecological importance of the CGSM wetlands. Monitoring of water level changes in wetland is very important resources to understand the hydrologic characteristics and the in-situ water level gauge stations are usually utilized to measure the water level. Although it can provide very good temporal resolution of water level information, it is limited to fully understand flow pattern owing to its very coarse spatial resolution. In this study, we evaluate the L-band ALOS-2 PALSAR-2 ScanSAR mode to observe the water level change over the wide wetland area using the radar interferometric technique. In order to assess the quality of the interferometric product in the aspect of spatial resolution and coherence, we also utilized ALOS-2 PALSAR-2 stripmap high-resolution mode observations.

On The performance of Coordinated Random Beamforming Schemes in A Two-Cell Symmetric Interference Channel (두 셀 대칭적 간섭 채널환경에서 협력적 불규칙 빔형성 방법의 성능에 대한 연구)

  • Yang, Jang-Hoon;Chae, Hyun-Jin;Kim, Yo-Han;Kim, Dong-Ku
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.4A
    • /
    • pp.318-324
    • /
    • 2011
  • In this paper, three coordinated random beamforming (CRBF) schemes are analyzed in a two-cell symmetric interference channel. A simple partial coordination of RBF with base station selection (BSS) is shown to achieve the same average sum rate performance of CRBF with joint encoding (JE). To improve the sum rate performance further, we also propose a transmission mode selection (TMS) between the BSS and JE which is shown to have additional sum rate gain for the large number of users. Simulation results verify the eectiveness of the proposed CRBF schemes and accuracy of the proposed analysis.

A Study on Dip-Pen Nanolithograpby Process to Fabricate 2D Pbotonic Crystal for Planar-Type Optical Bio-Sensor (평판형 광-바이오센서 (Planar-Type Optical Bio-Sensor)용 2차원 광자결정 제작을 위한 Dip-Pen Nanolithography 공정 연구)

  • Kim, Jun-Hyong;Lee, Jong-Il;Lee, Hyun-Yong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.381-383
    • /
    • 2005
  • 바이오센서 응용을 위한 대칭 및 비대칭 마하젠더 간섭계 광도파로 소자의 설계, 제작 및 광학적 응답특성을 평가하였다. 설계 제작된 광도파로 소자의 압력광원은 각각 1550nm와 632.8nm이고, 코어와 클래딩의 굴절률차는 0.45 $\Delta$%로 설계 제작하였다. 센서부(상위 클래드)의 금 박막의 미소 굴절률 변화에 따른 TE, TM모드의 특성을 분석하였다. 센서의 보다 높은 감도 개선을 위한 나노-광자결정 구조가 주목받고 있는데, 광자결정 구조의 구현를 위한 리소그래피 공정은 높은 분해능과 신뢰성 있는 나노스케일의 공정이 요구된다. 광-바이오센서의 감도 개선을 위해 센서부 표면에 2차원 나노-광자결정 배열을 제안하고 이를 구현하기 위한 Dip-Pen Nanolithography 공정에 대해 고찰하였다.

  • PDF

Implementation of Novel Bio-sensor Platform based on Optical MMI and Directional Coupler (광 MMI와 방향성 결합기에 기초한 새로운 바이오 센서 플랫폼의 구현)

  • Kwang-Chun Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.2
    • /
    • pp.163-168
    • /
    • 2023
  • In this paper, a novel platform for chemical sensing and biosensing is presented. The working principle is based on the coupling efficiency and interference properties of optical directional coupler (DC) and multimode interference coupler (MMIC). It has been realized using planar technology to allow integration on a silicon substrate. Firstly, the dispersion curves of DC and MMIC is described, and the design specification of an optimized slot optical waveguide to increase waveguide sensitivity is selected. Next, the sensor response to the refractive index change of sensing analyte is numerically simulated. The numerical results reveal that high effective index change per refractive index unit (RIU) change of analyte is obtained, and the sensitivity can be tuned using the DC and MMIC design technique.

An Analysis of Optimal Sequences for the Detection of Wake-up Signal in Disaster-preventing Broadcast (재난방송용 대기모드 해제신호 검출을 위한 최적 부호 성능 분석)

  • Park, Hae Yong;Jo, Bonggyun;Kim, Heung Mook;Han, Dong Seog
    • Journal of Broadcast Engineering
    • /
    • v.19 no.4
    • /
    • pp.491-501
    • /
    • 2014
  • Recently, the need for disaster-preventing broadcast has increased gradually to cope with natural disaster like earthquake and tsunami causing enormous losses of both life and property. In disaster-preventing broadcast system, the wake-up signal is used to alert user terminal and switch the current state of channel to the emergency channel, which is for the fast and efficient delivery of emergency information. In this paper, we propose the detection method of wake-up signal for disaster-preventing broadcast systems. The wake-up signals for disaster-preventing broadcast should have a good auto-correlation property in low power and narrow-band conditions that does not affect the existing digital television (DTV) system. The suitability of the m-sequence and complementary code (CC) is analyzed for wake-up signals according to signal to noise ratio. A wake-up signal is proposed by combining the direct sequence spread spectrum (DSSS) technique and pseudo noise (PN) sequences such as Barker and Walsh-Hadamard codes. By using the proposed method, a higher detecting performance can be achieved by the spreading gain compared to the single long m-sequence and the Golay code.

Acoustic Sensitivity Analysis of a Ring-type Probe Based on a Fiber-optic Sagnac Interferometric Sensor (광섬유 사냑 간섭형 센서에 기반한 링형 탐촉자의 수중 음향 민감도 해석)

  • Lee, Yeon-Woo;Kwon, Hyu-Sang;Kwon, Il-Bum
    • Korean Journal of Optics and Photonics
    • /
    • v.31 no.1
    • /
    • pp.13-19
    • /
    • 2020
  • To measure underwater acoustics using a fiber-optic Sagnac interferometric sensor, the sensitivities of ring-type probes are investigated by theoretical and experimental studies. A ring-type probe was fabricated by packaging a single-mode fiber wound around an acrylate cylinder of diameter 5 cm with epoxy bond. The probes were prepared as A-type, which was packaged with 46.84 m of sensing optical fiber, and B-type, which was packaged with 112.22 m of sensing fiber. The underwater acoustic test was performed at frequencies of 50, 70, and 90 kHz, and over a range of acoustic pressure of 20-100 Pa, to study the sensitivity. A commercial acoustic generator was located 1 m from the acoustic sensor, such as the ring-type probe or a commercial acoustic sensor. From the experimental test, the acoustic sensitivity of the ring-type probe had different values due to acoustic frequencies, unlike the theoretical prediction. Therefore, the experimental sensitivities were averaged for comparison to the theoretical values. These averaged sensitivities are 25.48 × 10-5 rad/Pa for the A-type probe and 60.79 × 10-5 rad/Pa for the B-type probe. The correction coefficient of Young's modulus c was determined to be 0.35.