Browse > Article
http://dx.doi.org/10.7780/kjrs.2022.38.5.1.1

Evaluation of Space-based Wetland InSAR Observations with ALOS-2 ScanSAR Mode  

Hong, Sang-Hoon (Department of Geological Sciences, Pusan National University)
Wdowinski, Shimon (Department of Earth & Environment, Florida International University)
Publication Information
Korean Journal of Remote Sensing / v.38, no.5_1, 2022 , pp. 447-460 More about this Journal
Abstract
It is well known that satellite synthetic aperture radar interferometry (InSAR) has been widely used for the observation of surface displacement owing to earthquakes, volcanoes, and subsidence very precisely. In wetlands where vegetation exists on the surface of the water, it is possible to create a water level change map with high spatial resolution over a wide area using the InSAR technique. Currently, a number of imaging radar satellites are in operation, and most of them support a ScanSAR mode observation to gather information over a large area at once. The Cienaga Grande de Santa Marta (CGSM) wetland, located in northern Colombia, is a vast wetland developed along the Caribbean coast. The CGSM wetlands face serious environmental threats from human activities such as reclamation for agricultural uses and residential purposes as well as natural causes such as sea level rise owing to climate change. Various restoration and protection plans have been conducted to conserve these invaluable environments in recognition of the ecological importance of the CGSM wetlands. Monitoring of water level changes in wetland is very important resources to understand the hydrologic characteristics and the in-situ water level gauge stations are usually utilized to measure the water level. Although it can provide very good temporal resolution of water level information, it is limited to fully understand flow pattern owing to its very coarse spatial resolution. In this study, we evaluate the L-band ALOS-2 PALSAR-2 ScanSAR mode to observe the water level change over the wide wetland area using the radar interferometric technique. In order to assess the quality of the interferometric product in the aspect of spatial resolution and coherence, we also utilized ALOS-2 PALSAR-2 stripmap high-resolution mode observations.
Keywords
ALOS-2 PALSAR-2; Stripmap; ScanSAR; Radar interferometry; Cienaga Grande de Santa Marta (CGSM); Azimuth spectrum;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Cardona-Uribe, J.A. and G. Manca, 2012. The use of correlated land change (clc) application to monitor coastal rehabilitation/restoration in the cienaga grande de santa marta (1984-2009), Proc. of 7th International Conference on Informatics and Urban and Regional Planning, Cagliari, May 10-12.
2 Cumming, I.G. and F.H. Wong, 2005. Digital processing of synthetic aperture radar data, Artech House, Norwood, MA, USA.
3 Goldstein, R.M. and C.L. Werner, 1998. Radar interferogram filtering for geophysical applications, Geophysical Research Letters, 25(21): 4035-4038. https://doi.org/10.1029/1998GL900033   DOI
4 Hanssen, R.F., 2001. Radar interferometry: Data interpretation and error analysis, vol. 2, Springer Science & Business Media, Berlin, Germany.
5 Hong, S.-H. and S. Wdowinski, 2013a. Interferometric coherence analysis using space-borne synthetic aperture radar with respect to spatial resolution, Korean Journal of Remote Sensing, 29(4): 389-397. https://doi.org/10.7780/kjrs.2013.29.4.4   DOI
6 Hong, S.-H. and S. Wdowinski, 2013b. Multitemporal multitrack monitoring of wetland water levels in the florida everglades using alos palsar data with interferometric processing, IEEE Geoscience and Remote Sensing Letters, 11(8): 1355-1359. https://doi.org/10.1109/LGRS.2013.2293492   DOI
7 Hong, S.-H. and S. Wdowinski, 2017. A review on monitoring the everglades wetlands in the southern florida using space-based synthetic aperture radar (SAR) observations, Korean Journal of Remote Sensing, 33(4): 377-390. https://doi.org/10.7780/kjrs.2017.33.4.4   DOI
8 Liang, C. and E.J. Fielding, 2017. Interferometry with alos-2 full-aperture scansar data, IEEE Transactions on Geoscience and Remote Sensing, 55(5): 2739-2750. https://doi.org/10.1109/TGRS.2017.2653190   DOI
9 Lindsey, E.O., R. Natsuaki, X. Xu, M. Shimada, M. Hashimoto, D. Melgar, and D.T. Sandwell, 2015. Line-of-sight displacement from alos-2 interferometry: Mw 7.8 gorkha earthquake and Mw 7.3 aftershock, Geophysical Research Letters, 42(16): 6655-6661. https://doi.org/10.1002/2015GL065385   DOI
10 Ning, J., D. Liu, K. Liu, H. Zhang, and Y. Wang, 2020. An improved full-aperture scansar imaging method integrating the MIAA based aperture interpolation, Journal of Sensors, 2020: 1-20. https://doi.org/10.1155/2020/8196081   DOI
11 Simard, M., V.H. Rivera-Monroy, J.E. Mancera-Pineda, E. Castaneda-Moya, and R.R. Twilley, 2008. A systematic method for 3D mapping of mangrove forests based on shuttle radar topography mission elevation data, icesat/glas waveforms and field data: Application to cienaga grande de santa marta, colombia, Remote Sensing of Environment, 112(5): 2131-2144. https://doi.org/10.1016/j.rse.2007.10.012   DOI
12 Suzuki, S., Y. Kankaku, and M. Shimada, 2013. Alos-2 acquisition strategy, Proc. of 2013 IEEE International Geoscience and Remote Sensing SymposiumIGARSS, Melbourne, VIC, Jul. 21-26, pp. 2396-2399. https://doi.org/10.1109/IGARSS.2013.6723306   DOI
13 JAXA, 2022. ALOS-2 Basic Observation Scenario, https://www.eorc.jaxa.jp/ALOS-2/en/obs/scenario/ALOS-2_Basic_Observation_Scenario_First-Ed_E_v00.pdf, Accessed on Sep. 2, 2022.
14 Tomiyasu, K., 1981. Conceptual performance of a satellite borne, wide swath synthetic aperture radar, IEEE Transactions on Geoscience and Remote Sensing, GE-19(2): 108-116. https://doi.org/10.1109/TGRS.1981.350361   DOI
15 Wdowinski, S., F. Amelung, F. Miralles-Wilhelm, T.H. Dixon, and R. Carande, 2004. Space-based measurements of sheet-flow characteristics in the everglades wetland, florida, Geophysical Research Letters, 31(15): L15503. https://doi.org/10.1029/2004GL020383   DOI
16 Zebker, H.A., T.G. Farr, R.P. Salazar, and T.H. Dixon, 1994. Mapping the world's topography using radar interferometry: the TOPSAT mission, Proceedings of the IEEE, 82(12): 1774-1786. https://doi.org/10.1109/5.338070   DOI
17 Bamler, R. and M. Eineder, 1996. Scansar processing using standard high precision sar algorithms, IEEE Transactions on Geoscience and Remote Sensing, 34(1): 212-218. https://doi.org/10.1109/36.481905   DOI
18 Hong, S.-H., S. Wdowinski, and S.-W. Kim, 2010a. Evaluation of terrasar-x observations for wetland insar application, IEEE Transactions on Geoscience and Remote Sensing, 48(2): 864-873. https://doi.org/10.1109/TGRS.2009.2026895   DOI
19 Hong, S.-H., S. Wdowinski, and S.-W. Kim, 2021. Extraction of absolute water level using tandem-x bistatic observations with a large perpendicular baseline, IEEE Geoscience and Remote Sensing Letters, 19: 1-5. https://doi.org/10.1109/LGRS.2021.3086875   DOI
20 Hong, S.-H., S. Wdowinski, S.-W. Kim, and J.-S. Won, 2010b. Multi-temporal monitoring of wetland water levels in the florida everglades using interferometric synthetic aperture radar (InSAR), Remote Sensing of Environment, 114(11): 2436-2447. https://doi.org/10.1016/j.rse.2010.05.019   DOI
21 Jolivet, R., R. Grandin, C. Lasserre, M.P. Doin, and G. Peltzer, 2011. Systematic InSAR tropospheric phase delay corrections from global meteorological reanalysis data, Geophysical Research Letters, 38(17): L17311. https://doi.org/10.1029/2011GL048757   DOI
22 Kankaku, Y., S. Suzuki, and Y. Osawa, 2013. Alos-2 mission and development status, Proc. of 2013 IEEE International Geoscience and Remote Sensing Symposium-IGARSS, Melbourne, VIC, Jul. 21-26, pp. 2396-2399. https://doi.org/10.1109/IGARSS.2013.6723302   DOI
23 Liang, C., Z. Liu, E.J. Fielding, and R. Burgmann, 2018. Insar time series analysis of l-band wide-swath sar data acquired by alos-2, IEEE Transactions on Geoscience and Remote Sensing, 56(8): 4492-4506. https://doi.org/10.1109/TGRS.2018.2821150   DOI
24 Botero, L. and H. Salzwedel, 1999. Rehabilitation of the cienaga grande de santa marta, a mangroveestuarine system in the caribbean coast of colombia, Ocean & Coastal Management, 42(2-4): 243-256. https://doi.org/10.1016/S0964-5691(98)00056-8   DOI
25 Clarkson, B.R., A.-G. E. Ausseil, and P. Gerbeaux, 2013. Wetland ecosystem services, vol. 1, Academia.edu, San Francisco, CA, USA, pp. 192-202.
26 Guarnieri, A.M. and C. Prati, 1996. Scansar focusing and interferometry, IEEE Transactions on Geoscience and Remote Sensing, 34(4): 1029-1038. https://doi.org/10.1109/36.508420   DOI
27 Roderstein, M., L. Perdomo, C. Villamil, T. Hauffe, and M.-L. Schnetter, 2014. Long-term vegetation changes in a tropical coastal lagoon system after interventions in the hydrological conditions, Aquatic Botany, 113: 19-31. https://doi.org/10.1016/j.aquabot.2013.10.008   DOI
28 Tiner, R.W., M.W. Lang, and V.V. Klemas, 2015. Remote sensing of wetlands: Applications and advances, CRC Press, Boca Raton, FL, USA, pp. 574.
29 Wdowinski, S., S.-H. Hong, A. Mulcan, and B. Brisco, 2013. Remote-sensing monitoring of tide propagation through coastal wetlands, Oceanography, 26(3):64-69.   DOI
30 Cumming, I., Y. Guo, and F. Wong, 1997. Analysis and precision processing of radarsat scansar data, Proc. of Geomatics in the Era of RADARSAT, Ottawa, May 25-30, pp. 25-30.
31 Jaramillo, F., I. Brown, P. Castellazzi, L. Espinosa, A. Guittard, S.-H. Hong, V.H. Rivera-Monroy, and S. Wdowinski, 2018a. Assessment of hydrologic connectivity in an ungauged wetland with insar observations, Environmental Research Letters, 13(2): 024003. https://doi.org/10.1088/1748-9326/aa9d23   DOI
32 Keddy, P.A., 2010. Wetland ecology: principles and conservation, Cambridge University Press, Cambridge, UK.
33 Jaramillo, F., L. Licero, I. Ahlen, S. Manzoni, J.A. Rodriguez-Rodriguez, A. Guittard, A. Hylin, J. Bolanos, J. Jawitz, and S. Wdowinski, 2018b. Effects of hydroclimatic change and rehabilitation activities on salinity and mangroves in the cienaga grande de santa marta, colombia, Wetlands, 38(4): 755-767. https://doi.org/10.1007/s13157-018-1024-7   DOI
34 Jordan, R.L., E.R. Caro, Y. Kim, M. Kobrick, Y. Shen, F.V. Stuhr, and M.U. Werner, 1996. Shuttle radar topography mapper (SRTM), Proc. of SPIE Microwave Sensing and Synthetic Aperture Radar, Taormina, Sep. 23-27, vol. 2958, pp. 412-422. https://doi.org/10.1117/12.262717   DOI