• Title/Summary/Keyword: 모드연성

Search Result 190, Processing Time 0.022 seconds

Vibration Characteristics of A Rectangular Tank in accordance with Changing Thickness And Boundary Condition (경계조건과 두께 변화에 따른 사각탱크의 진동 특성)

  • Bae, S.Y.
    • Journal of Power System Engineering
    • /
    • v.15 no.1
    • /
    • pp.24-31
    • /
    • 2011
  • Rectangular box type structures are used in many fields of civil, mechanical and marine engineering. Especially, Most ship structures are often in contact with inner or outer fluid, like ballast, fuel and stem tanks. Fatigue damages are sometimes observed in these tanks which seem to be caused by resonance with exciting force of engine and propeller. Vibration characteristics of these thin walled tanks in contact with fluid near engine and propeller are strongly affected by added mass of containing fluid. Therefore it is essentially important to estimate the added mass effect to predict vibration of the tanks. Many authors have studied vibration of rectangular tanks containing fluid. Few research on dynamic interaction among tank walls filled with fluid are reported in the vibration of rectangular tanks recently. In case of rectangular tanks, structural coupling between adjacent panels and effect of vibration modes of multiple panels on added mass of water have to be considered. In the previous report, a numerical analysis is performed for the coupling effect between panels of a tank on added mass of containing fluid, the effect of structural constraint between panels on each vibration mode for fluid region, and mode characteristics in accordance with changing breadth of the plates by using finite element method for plates and boundary element method for fluid region. In this paper, the coupling effect between panels of a tank on added mass of containing fluid, the effect of structural constraint between panels on each vibration mode for fluid region, and mode characteristics in accordance with changing length, thickness, and boundary condition of the plates are investigated numerically and discussed.

Piezoelectric Energy Harvesting from Bridge Vibrations under Railway Loads (철도하중에 의한 교량 진동을 이용한 압전 에너지 수확)

  • Kwon, Soon-Duck;Lee, Hankyu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.4A
    • /
    • pp.287-293
    • /
    • 2011
  • This paper investigates the applicability of a piezoelectric cantilever for energy supply of wireless sensor node used in structural health monitoring of bridges. By combining the constitutive equation of piezoelectric material and the dynamic equation of cantilever structure, the coupled governing equation for cantilever equipped piezoelectric patches has been addressed in matrix form. Forced excitation tests were carried out to validate the numerical model and to investigate the power output characteristics of the energy harvester. From the numerical simulation based on the measured bridge accelerations under KTX, Saemaul, Mugunghwa trains, the peak powers generated from the device were found to be 28.5 mW, 0.65 mW, 0.51 mW respectively. It is revealed from the results that bridge vibrations caused by moving loads is not a practical source for energy harvesting because of its low acceleration level, low frequency and short duration.

A Study on the Similitude of member Behavior for Small-Scale Modeling of Reinforced Concrete Structure (철근콘크리트 축소모델의 부재거동 상사성에 관한 연구)

  • 이한선;장진혁
    • Magazine of the Korea Concrete Institute
    • /
    • v.8 no.3
    • /
    • pp.177-185
    • /
    • 1996
  • Four types of experiments were performed to check the similitude of member behavior between prototype and 1 /10 scale models : (1) Test of slender columns with P-$\Delta$ effect, (2) Test of short columns with and without confinement steel, (3) Test of simple beams without stirrups, and (4) 'T-beam test. Based on the results of experiments, the conclusions were made as follows : (1) The P-$\Delta$ effect of slender columns can be almost exactly represented by 1/10 scale model. (2) The effect of confinement on short columns by the hoop steel can be also roughly simulated by 1/10 scale model. (3) The failure modes of simple beams without stirrups are brittle shear failures in prototype whereas those of 1/10 scale models are the ductile yielding of tension steel followed by large diagonal tension cracking and compressive concrete failure. (4) The behaviors of prototype and 1/10 scale model in T-beams appear very similar.

Determination of Steel-Concrete Interface Parameters : Bonded and Unbonded Slip Tests (강-콘크리트 계면의 계면상수 결정 : 부착 및 비부착 슬립실험)

  • Lee, Ta;Joo, Young-Tae;Lee, Yong-Hak
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.6
    • /
    • pp.773-780
    • /
    • 2009
  • Experiments on steel-concrete interface are performed to investigate and determine the mechanical roles and properties of interface parameters. The intrinsic different nature of bonded and unbonded interfaces are addressed based on the experimental observations that were obtained from two types of tests considering bonded and unbonded interfaces. The unbonded tests are performed for the specimens that are in unbonded when the initially bonded specimens are tested first. Four cases of lateral confinements including pure slip, and low and medium levels of lateral pressure are taken into account to investigate the effects of lateral confinements on interface behavior. It is shown that the maximum shear strengths, the levels of residual strengths and the Mode II fracture energy release rates are linearly related to the confinement levels. Based on the experimental evidences obtained from this study, the values of interface parameters required in a steel-concrete interface constitutive model will be presented in the companion paper.

An Experimental study on Failure Mode of Space Frame's Ball joint connection (스페이스프레임의 볼조인트 접합부 파괴모드에 관한 실험적 연구)

  • Lee, Sung-Min;Kim, Min-Sook;Kim, Dae-Young;Song, Chang-Young;Kang, Chang-Hoon
    • Journal of Korean Association for Spatial Structures
    • /
    • v.7 no.6
    • /
    • pp.61-68
    • /
    • 2007
  • The hole for the insertion of the pin in the shank is exist at ball joint connection of the space frame. It brings about the brittle fracture caused by stress concentration. Consequently it cannot expect the deformation performance or energy absorption performance from ball joint connection. In this study we developed a new connection details which will increase the plastic deformation performance at ball joint connection and can absorb the error in construction, which expect the plastic deformation performance at the reduced shank without brittle fracture at the screw of bolt and pin. Also it's capacity is verified by the performance in numerical analysis and test. We confirmed bolt's plastic deformantion performance through controled shank and pin's area.

  • PDF

Effect of Span-to-Depth Ratio on Behavior and Capacity in Composite Structure of Sandwich System (샌드위치식 복합구조체의 셀(Cell)형상비가 거동과 성능에 미치는 영향)

  • 정연주;정광회;김병석;박성수;황일선
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2000.10a
    • /
    • pp.73-78
    • /
    • 2000
  • This paper describes the effect of span-to-depth ratio, which describes aspect of cell formed with top diaphragm steel plate, on capacity in composite steel-concrete structure of sandwich system. The span-to-depth ratio \ulcorner load-carrying mechanism and load-distribution capacity of structure. Therefore, stress levels of members and load-resis\ulcorner of system vary according to span-depth ratio. In this study, numerical nonlinear analysis was performed to various ratio for two types(MA, MB) composite structure of sandwich system to analyze the influence of span-to-depth ratio or, behavior. The difference of load-carrying mechanism and stress of members results from analysis results, then bas\ulcorner differences, the effects of span-to-depth ratio on shear capacity, flexural capacity and load-resistance capacity were analyze effects on failure mode and ductility were briefly. As a results of this study, as span-to-depth ratio increases, \ulcorner bottom steel plate and concrete lower. This implies an increase in effective flexural and shear capacity. Therefore lo\ulcorner capacity of structure improves as span-to-depth ratio increases, Especially, the effect is greate in shear than flexural span-to-depth ratio increases, this difference between flexural and shear capacity may change failure mode and ductility. span-to-depth ratio increases capacity increases more than flexural capacity, we should expect that structural behavior mode gradually change from shear to flexural and ductility of structure gradually improves.

  • PDF

Influence of complex environment test on lead-free solder joint reliability (온도변화에 따른 진동의 무연솔더 접합부 신뢰성에 미치는 영향)

  • Sa, Yoon-Ki;Yoo, Se-Hoon;Kim, Yeong-K.;Lee, Chang-Woo
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.77-77
    • /
    • 2009
  • ELV(; End of Life Vehicles)를 비롯한 최근 환경 동향은 자동차 전장 모듈에 대하여 다양한 무연 솔더 적용을 요구하고 있다. 특히 자동차 엔진룸과 트랜스미션은 가동 중 고온 및 진동의 지속적인 영향을 받기 때문에 이와 유사한 환경에서의 신뢰성 연구가 필요한 시점이다. 이에 본 연구에서는 Sn3.5Ag, Sn0.7Cu, Sn5.0Sb 솔더 조성에 대하여 복합환경 조건하에서 접합부 신뢰성을 평가하였다. 복합환경을 구현하기 위하여 $-40{\sim}150^{\circ}C$ 범위의 온도 사이클과 랜덤 진동을 동시에 인가하였으며, 진동 가속도 3G, 진동주파수는 10~1000Hz 로 설정하여 자동차 환경을 충족하였다. 복합시험의 1 cycle 은 20 시간이며, 총 120 시간의 시험 동안 진동의 영향 및 진동과 고온이 동시에 작용하였을 경우의 영향에 대해 비교하였다. 테스트 모듈 제작을 위해 450 um 의 솔더볼이 적용되었으며, 각 조성의 솔더볼을 이용하여 BGA test chip 제작하였고, 제작된 BGA test chip 은 다시 daisy chain PCB 위에 실장 및 리플로우 공정을 통해 접합되었다. 테스트 동안 In-situ 로 저항의 변화를 관찰하여 파단의 유무를 판단하였고 전자주사현미경을 통해 파괴 기전을 평가하였다. 복합시험 시간에 따른 전단강도를 측정하였으며, 각 조성에 대하여 상이한 전단강도 변화를 관찰하였다. 계면 IMC 형상은 전단강도 변화에 영향을 주었으며, 특히 높은 온도가 IMC 성장을 촉진시켜 전단강도 감소에 영향을 주었다. 본 복합환경 시험 조건에서는 Sn0.7Cu 가 가장 안정적이었으며, 파단면을 관찰한 결과 연성파괴 모드가 관찰되었다.

  • PDF

System Reliability Analysis for Multiple Failure Modes of Piezoelectric Energy Harvester Using Generalized Complementary Intersection Method (Generalized Complementary Intersection Method를 이용한 압전 에너지 수확 장치의 다중 파손모드에 대한 시스템 신뢰성 해석)

  • Yoon, Heonjun;Youn, Byeng D.;Kim, Heung-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.544-544
    • /
    • 2014
  • Energy harvesting technology, which scavenges electric power from ambient, otherwise wasted, energy sources, has been explored to develop self-powered wireless sensors and possibly eliminate the battery replacement cost for wireless sensors. Among ambient energy sources, vibration energy can be converted into electric power through a piezoelectric energy harvester. For the last decade, although tremendous advances have been made in design methodology to maximize harvestable electric power under a given vibration condition, the research in reliability assessment to ensure durability has been stagnant due to the complicated nature of the multiple failure modes of a piezoelectric energy harvester, such as the interfacial delamination, fatigue failure, and dynamic fracture. Therefore, this study presents the first-ever system reliability analysis for multiple failure modes of a piezoelectric energy harvester using the Generalized Complementary Intersection Method (GCIM), while accounts for the energy conversion performance. The GCIM enables to decompose the probabilities of high-order joint failure events into probabilities of complementary intersection events. The electromechanically-coupled analytical model is implemented based on the Kirchhoff plate theory to analyze its output performances of a piezoelectric energy harvester. Since a durable as well as efficient design of a piezoelectric energy harvester is significantly important in sustainably utilizing self-powered electronics, we believe that technical development on system reliability analysis will have an immediate and major impact on piezoelectric energy harvesting technology.

  • PDF

Progressive Collapse Resisting Capacity of Braced Frames (가새골조의 연쇄붕괴 저항성능)

  • Kim, Jin-Koo;Lee, Young-Ho;Choi, Hyun-Hoon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.5
    • /
    • pp.429-437
    • /
    • 2008
  • In this study the progressive collapse potential of braced frames were investigated using the nonlinear static and dynamic analyses. All of nine different brace types were considered along with a special moment-resisting frame for comparison. According to the pushdown analysis results, most braced frames designed per current design codes satisfied the design guidelines for progressive collapse initiated by loss of a first story mid-column; however most model structures showed brittle failure mode. This was caused by buckling of columns after compressive braces buckled. Among the braced frames considered, the inverted- V type braced frames showed superior ductile behavior during progressive collapse. The nonlinear dynamic analysis results showed that all the braced frame model structures remained in stable condition after sudden removal of a column, and their deflections were less than that of the moment-resisting frame.

Flexural Behavior of MRS Continuous Joints for the Prestressed Concrete One-way Joist Slab System (프리스트레스 콘크리트 일방향 장선구조로 구축한 MRS 연속단 접합부의 휨거동)

  • Oh, Young-Hun;Moon, Jeong-Ho;Im, Ju-Hyeuk;Choi, Dong-Sup;Lee, Kang-Chul
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.1
    • /
    • pp.148-155
    • /
    • 2010
  • The purpose of this study is to propose and evaluate the continuous joint constructed with MRS system which is utilized for floor system in the parking structures or commercial retail buildings. Four specimens were fabricated and tested to examine the structural performance of the continuous joint with different joint detailing. Structural test for the specimens was undertaken to simulate the actual stress condition of the negative moment resisting connection in the prestressed precast concrete parking structures with 8m span. Based on the experimental results, the MRS system could be designed as the ductile continuous joint governed by flexural behavior. Therefore the MRS system developed in this study would provide a superior joint behavior to conventional double-tee system when constructing monolithic joint composed of simply supported precast members.