• Title/Summary/Keyword: 모드수

Search Result 4,728, Processing Time 0.038 seconds

Mammalian Reproduction and Pheromones (포유동물의 생식과 페로몬)

  • Lee, Sung-Ho
    • Development and Reproduction
    • /
    • v.10 no.3
    • /
    • pp.159-168
    • /
    • 2006
  • Rodents and many other mammals have two chemosensory systems that mediate responses to pheromones, the main and accessory olfactory system, MOS and AOS, respectively. The chemosensory neurons associated with the MOS are located in the main olfactory epithelium, while those associated with the AOS are located in the vomeronasal organ(VNO). Pheromonal odorants access the lumen of the VNO via canals in the roof of the mouth, and are largely thought to be nonvolatile. The main pheromone receptor proteins consist of two superfamilies, V1Rs and V2Rs, that are structurally distinct and unrelated to the olfactory receptors expressed in the main olfactory epithelium. These two type of receptors are seven transmembrane domain G-protein coupled proteins(V1R with $G_{{\alpha}i2}$, V2R with $G_{0\;{\alpha}}$). V2Rs are co-expressed with nonclassical MHC Ib genes(M10 and other 8 M1 family proteins). Other important molecular component of VNO neuron is a TrpC2, a cation channel protein of transient receptor potential(TRP) family and thought to have a crucial role in signal transduction. There are four types of pheromones in mammalian chemical communication - primers, signalers, modulators and releasers. Responses to these chemosignals can vary substantially within and between individuals. This variability can stem from the modulating effects of steroid hormones and/or non-steroid factors such as neurotransmitters on olfactory processing. Such modulation frequently augments or facilitates the effects that prevailing social and environmental conditions have on the reproductive axis. The best example is the pregnancy block effect(Bruce effect), caused by testosterone-dependent major urinary proteins(MUPs) in male mouse urine. Intriguingly, mouse GnRH neurons receive pheromone signals from both odor and pheromone relays in the brain and may also receive common odor signals. Though it is quite controversial, recent studies reveal a complex interplay between reproduction and other functions in which GnRH neurons appear to integrate information from multiple sources and modulate a variety of brain functions.

  • PDF

Determination of plasma C16-C24 globotriaosylceramide (Gb3) isoforms by tandem mass spectrometry for diagnosis of Fabry disease (패브리병(Fabry) 진단을 위한 혈장 중 Globotriaosylceramide (Gb3)의 탠덤매스 분석법 개발과 임상 응용)

  • Yoon, Hye-Ran;Cho, Kyung-Hee;Yoo, Han-Wook;Choi, Jin-Ho;Lee, Dong-Hwan;Zhang, Kate;Keutzer, Joan
    • Journal of Genetic Medicine
    • /
    • v.4 no.1
    • /
    • pp.45-52
    • /
    • 2007
  • Purpose : A simple, rapid, and highly sensitive analytical method for Gb3 in plasma was developed without labor-ex tensive pre-treatment by electrospray ionization MS/ MS (ESI-MS/MS). Measurement of globotriaosy lceramide (Gb3, ceramide trihex oside) in plasma has clinical importance for monitoring after enzyme replacement therapy in Fabry disease patients. The disease is an X-linked lipid storage disorder that results from a deficiency of the enzyme ${\alpha}$-galactosidase A (${\alpha}$-Gal A). The lack of ${\alpha}$-Gal A causes an intracellular accumulation of glycosphingolipids, mainly Gb3. Methods : Only simple 50-fold dilution of plasma is necessary for the extraction and isolation of Gb3 in plasma. Gb3 in diluted plasma was dissolved in dioxane containing C17:0 Gb3 as an internal standard. After centrifugation it was directly injected and analyzed through guard column by in combination with multiple reaction monitoring mode of ESI-MS/MS. Results : Eight isoforms of Gb3 were completely resolved from plasma matrix. C16:0 Gb3 occupied 50% of total Gb3 as a major component in plasma. Linear relationship for Gb3 isoforms w as found in the range of 0.001-1.0 ${\mu}g$/mL. The limit of detection (S/N=3) was 0.001 ${\mu}g$/mL and limit of quantification was 0.01 ${\mu}g$/mL for C16:0 Gb3 with acceptable precision and accuracy. Correlation coefficient of calibration curves for 8 Gb3 isoforms ranged from 0.9678 to 0.9982. Conclusion : This quantitative method developed could be useful for rapid and sensitive 1st line Fabry disease screening, monitoring and/or diagnostic tool for Fabry disease.

  • PDF

First Observational Finding of Submesoscale Intrathermocline Eddy in the East Sea using Underwater Glider (수중글라이더를 활용한 동해 아중규모 중층성 소용돌이 발견)

  • PARK, JONGJIN
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.24 no.2
    • /
    • pp.332-350
    • /
    • 2019
  • Zonal hydrographic section measurements at $39.7^{\circ}N$ were conducted between $129.0^{\circ}E$ and $131.3^{\circ}E$ from August 7 to 25 in 2017 using an underwater glider. The glider traveled about 440 km for about 18 days along the 106 line of the regular shipboard measurements in the National Institute of Fishery Science (NIFS) and obtained twice a hydrographic section with high horizontal resolution. Even under the strong East Korea Warm Current with maximum speed of 0.8 m/s across the section, the glider successfully maintained the designated path within an RMS distance of 400 m. By comparing with the NIFS shipboard hydrographic section, it is confirmed that high spatial resolution measurements obtained from a glider were necessary to properly observe front and eddy variability in the East Sea where a typical spatial scale is smaller than the open oceans. From the glider section measurements, a new lens-shaped eddy was found in the thermocline. The lens-shaped anticyclonic eddy had 10~13 km in horizonal width and about 200 m in height like a typical submesoscale eddy resided within the thermocline, which was firstly named as Korea intrathermocline eddy (Keddy). The Keddy has the distinguishing characteristics of a typical intrathermocline eddy, such as a central core with anomalously weak stratification, a convex shaped lens bounded by the stratification anomaly, an interior maximum of velocity at 170 m, no surface appearance of the geopotential field, a small or comparable horizontal width relative to the first baroclinic Rossby radius of deformation, and the Rossby nubmer of 0.7.

Fabrication of Portable Self-Powered Wireless Data Transmitting and Receiving System for User Environment Monitoring (사용자 환경 모니터링을 위한 소형 자가발전 무선 데이터 송수신 시스템 개발)

  • Jang, Sunmin;Cho, Sumin;Joung, Yoonsu;Kim, Jaehyoung;Kim, Hyeonsu;Jang, Dayeon;Ra, Yoonsang;Lee, Donghan;La, Moonwoo;Choi, Dongwhi
    • Korean Chemical Engineering Research
    • /
    • v.60 no.2
    • /
    • pp.249-254
    • /
    • 2022
  • With the rapid advance of the semiconductor and Information and communication technologies, remote environment monitoring technology, which can detect and analyze surrounding environmental conditions with various types of sensors and wireless communication technologies, is also drawing attention. However, since the conventional remote environmental monitoring systems require external power supplies, it causes time and space limitations on comfortable usage. In this study, we proposed the concept of the self-powered remote environmental monitoring system by supplying the power with the levitation-electromagnetic generator (L-EMG), which is rationally designed to effectively harvest biomechanical energy in consideration of the mechanical characteristics of biomechanical energy. In this regard, the proposed L-EMG is designed to effectively respond to the external vibration with the movable center magnet considering the mechanical characteristics of the biomechanical energy, such as relatively low-frequency and high amplitude of vibration. Hence the L-EMG based on the fragile force equilibrium can generate high-quality electrical energy to supply power. Additionally, the environmental detective sensor and wireless transmission module are composed of the micro control unit (MCU) to minimize the required power for electronic device operation by applying the sleep mode, resulting in the extension of operation time. Finally, in order to maximize user convenience, a mobile phone application was built to enable easy monitoring of the surrounding environment. Thus, the proposed concept not only verifies the possibility of establishing the self-powered remote environmental monitoring system using biomechanical energy but further suggests a design guideline.

Estimation of spatial distribution of snow depth using DInSAR of Sentinel-1 SAR satellite images (Sentinel-1 SAR 위성영상의 위상차분간섭기법(DInSAR)을 이용한 적설심의 공간분포 추정)

  • Park, Heeseong;Chung, Gunhui
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.12
    • /
    • pp.1125-1135
    • /
    • 2022
  • Damages by heavy snow does not occur very often, but when it does, it causes damage to a wide area. To mitigate snow damage, it is necessary to know, in advance, the depth of snow that causes damage in each region. However, snow depths are measured at observatory locations, and it is difficult to understand the spatial distribution of snow depth that causes damage in a region. To understand the spatial distribution of snow depth, the point measurements are interpolated. However, estimating spatial distribution of snow depth is not easy when the number of measured snow depth is small and topographical characteristics such as altitude are not similar. To overcome this limit, satellite images such as Synthetic Aperture Radar (SAR) can be analyzed using Differential Interferometric SAR (DInSAR) method. DInSAR uses two different SAR images measured at two different times, and is generally used to track minor changes in topography. In this study, the spatial distribution of snow depth was estimated by DInSAR analysis using dual polarimetric IW mode C-band SAR data of Sentinel-1B satellite operated by the European Space Agency (ESA). In addition, snow depth was estimated using geostationary satellite Chollian-2 (GK-2A) to compare with the snow depth from DInSAR method. As a result, the accuracy of snow cover estimation in terms with grids was about 0.92% for DInSAR and about 0.71% for GK-2A, indicating high applicability of DInSAR method. Although there were cases of overestimation of the snow depth, sufficient information was provided for estimating the spatial distribution of the snow depth. And this will be helpful in understanding regional damage-causing snow depth.

Evaluation of the Natural Vibration Modes and Structural Strength of WTIV Legs based on Seabed Penetration Depth (해상풍력발전기 설치 선박 레그의 해저면 관입 깊이에 따른 고유 진동 모드와 구조 강도 평가)

  • Myung-Su Yi;Kwang-Cheol Seo;Joo-Shin Park
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.30 no.1
    • /
    • pp.127-134
    • /
    • 2024
  • With the growth of offshore wind power generation market, the corresponding installation vessel market is also growing. It is anticipated that approximately 100 installation vessels will be required in the of shore wind power generation market by 2030. With a price range of 300 to 400 billion Korean won per vessel, this represents a high-value market compared to merchant vessels. Particularly, the demand for large installation vessels with a capacity of 11 MW or more is increasing. The rapid growth of the offshore wind power generation market in the Asia-Pacific region, centered around China, has led to several discussions on orders for operational installation vessels in this region. The seabed geology in the Asia-Pacific region is dominated by clay layers with low bearing capacity. Owing to these characteristics, during vessel operations, significant spudcan and leg penetration depths occur as the installation vessel rises and descends above the water surface. In this study, using penetration variables ranging from 3 to 21 m, the unique vibration period, structural safety of the legs, and conductivity safety index were assessed based on penetration depths. As the penetration depth increases, the natural vibration period and the moment length of the leg become shorter, increasing the margin of structural strength. It is safe against overturning moment at all angles of incidence, and the maximum value occurs at 270 degrees. The conditions reviewed through this study can be used as crucial data to determine the operation of the legs according to the penetration depth when developing operating procedures for WTIV in soft soil. In conclusion, accurately determining the safety of the leg structure according to the penetration depth is directly related to the safety of the WTIV.

Estimation of Internal Motion for Quantitative Improvement of Lung Tumor in Small Animal (소동물 폐종양의 정량적 개선을 위한 내부 움직임 평가)

  • Yu, Jung-Woo;Woo, Sang-Keun;Lee, Yong-Jin;Kim, Kyeong-Min;Kim, Jin-Su;Lee, Kyo-Chul;Park, Sang-Jun;Yu, Ran-Ji;Kang, Joo-Hyun;Ji, Young-Hoon;Chung, Yong-Hyun;Kim, Byung-Il;Lim, Sang-Moo
    • Progress in Medical Physics
    • /
    • v.22 no.3
    • /
    • pp.140-147
    • /
    • 2011
  • The purpose of this study was to estimate internal motion using molecular sieve for quantitative improvement of lung tumor and to localize lung tumor in the small animal PET image by evaluated data. Internal motion has been demonstrated in small animal lung region by molecular sieve contained radioactive substance. Molecular sieve for internal lung motion target was contained approximately 37 kBq Cu-64. The small animal PET images were obtained from Siemens Inveon scanner using external trigger system (BioVet). SD-Rat PET images were obtained at 60 min post injection of FDG 37 MBq/0.2 mL via tail vein for 20 min. Each line of response in the list-mode data was converted to sinogram gated frames (2~16 bin) by trigger signal obtained from BioVet. The sinogram data was reconstructed using OSEM 2D with 4 iterations. PET images were evaluated with count, SNR, FWHM from ROI drawn in the target region for quantitative tumor analysis. The size of molecular sieve motion target was $1.59{\times}2.50mm$. The reference motion target FWHM of vertical and horizontal was 2.91 mm and 1.43 mm, respectively. The vertical FWHM of static, 4 bin and 8 bin was 3.90 mm, 3.74 mm, and 3.16 mm, respectively. The horizontal FWHM of static, 4 bin and 8 bin was 2.21 mm, 2.06 mm, and 1.60 mm, respectively. Count of static, 4 bin, 8 bin, 12 bin and 16 bin was 4.10, 4.83, 5.59, 5.38, and 5.31, respectively. The SNR of static, 4 bin, 8 bin, 12 bin and 16 bin was 4.18, 4.05, 4.22, 3.89, and 3.58, respectively. The FWHM were improved in accordance with gate number increase. The count and SNR were not proportionately improve with gate number, but shown the highest value in specific bin number. We measured the optimal gate number what minimize the SNR loss and gain improved count when imaging lung tumor in small animal. The internal motion estimation provide localized tumor image and will be a useful method for organ motion prediction modeling without external motion monitoring system.

THE TEMPERATURE RISING IN PULP CHAMBER DURING COMPOSITE RESIN POLYMERIZATION (광중합 기전에 따른 복합레진 중합 시 치수강 내 온도변화)

  • Hwang, Dong-Hwan;Lee, Ju-Hyun;Park, Ho-Won
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.30 no.3
    • /
    • pp.431-438
    • /
    • 2003
  • This study investigates pulp chamber temperature rise during composite resin polymerization by plasma arc(Group III : Flipo 3 sec, Group IV : Flipo 5 sec) and LED curing units(Group V : Lux-O-Max, 40 sec) as well as conventional halogen lamp curing units(Group I : VIP mode3, 20 sec, Group II : VIP mode6, 20 sec). The results are as follows : 1. All of the investigated pulp chamber temperature rises are lower than the boundary temperature could result in irreversible damage to the pulpal tissue ($5.5^{\circ}C$). 2. In the group II, it is found the significantly higher pulp chamber temperature rise than any other groups(p<0.05). 3. In the group of composite resin light-cured with VIP, it is found the significantly higher pulp chamber temperature rise in the group II than group I(p<0.05). 4. In the group of composite resin light-cured with Flipo, it is found the significantly higher pulp chamber temperature rise in the group IV than group III (p<0.05). 5. In the case of comparing VIP and Flipo, group II is significantly higher pulp chamber temperature rise than group III, IV(p<0.05), and group IV is significantly higher pulp chamber temperature rise than group I(p<0.05), and it does not significantly differ between group I and III. 6. In the group of composite resin light-cured with Lux-O-Max, it is found the significantly lower pulp chamber temperature rise than any other groups (p<0.05).

  • PDF

Research of z-axis geometric dose efficiency in multi-detector computed tomography (MDCT 장치의 z-축 기하학적 선량효율에 관한 연구)

  • Kim, You-Hyun;Kim, Moon-Chan
    • Journal of radiological science and technology
    • /
    • v.29 no.3
    • /
    • pp.167-175
    • /
    • 2006
  • With the recent prevalence of helical CT and multi-slice CT, which deliver higher radiation dose than conventional CT due to overbeaming effect in X-ray exposure and interpolation technique in image reconstruction. Although multi-detector and helical CT scanner provide a variety of opportunities for patient dose reduction, the potential risk for high radiation levels in CT examination can't be overemphasized in spite of acquiring more diagnostic information. So much more concerns is necessary about dose characteristics of CT scanner, especially dose efficient design as well as dose modulation software, because dose efficiency built into the scanner's design is probably the most important aspect of successful low dose clinical performance. This study was conducted to evaluate z-axis geometric dose efficiency in single detector CT and each level multi-detector CT, as well as to compare z-axis dose efficiency with change of technical scan parameters such as focal spot size of tube, beam collimation, detector combination, scan mode, pitch size, slice width and interval. The results obtained were as follows ; 1. SDCT was most highest and 4 MDCT was most lowest in z-axis geometric dose efficiency among SDCT, 4, 8, 16, 64 slice MDCT made by GE manufacture. 2. Small focal spot was 0.67-13.62% higher than large focal spot in z-axis geometric dose efficiency at MDCT. 3. Large beam collimation was 3.13-51.52% higher than small beam collimation in z-axis geometric dose efficiency at MDCT. 4. Z-axis geometric dose efficiency was same at 4 slice MDCT in all condition and 8 slice MDCT of large beam collimation with change of detector combination, but was changed irregularly at 8 slice MDCT of small beam collimation and 16 slice MDCT in all condition with change of detector combination. 5. There was no significant difference for z-axis geometric dose efficiency between conventional scan and helical scan, and with change of pitch factor, as well as change of slice width or interval for image reconstruction. As a conclusion, for reduction of patient radiation dose delivered from CT examination we are particularly concerned with dose efficiency of equipment and have to select proper scanning parameters which increase z-axis geometric dose efficiency within the range of preserving optimum clinical information in MDCT examination.

  • PDF

Study of Scatter Influence of kV-Conebeam CT Based Calculation for Pelvic Radiotherapy (골반 방사선 치료에서 산란이 kV-Conebeam CT 영상 기반의 선량계산에 미치는 영향에 대한 연구)

  • Yoon, KyoungJun;Kwak, Jungwon;Cho, Byungchul;Kim, YoungSeok;Lee, SangWook;Ahn, SeungDo;Nam, SangHee
    • Progress in Medical Physics
    • /
    • v.25 no.1
    • /
    • pp.37-45
    • /
    • 2014
  • The accuracy and uniformity of CT numbers are the main causes of radiation dose calculation error. Especially, for the dose calculation based on kV-Cone Beam Computed Tomography (CBCT) image, the scatter affecting the CT number is known to be quite different by the object sizes, densities, exposure conditions, and so on. In this study, the scatter impact on the CBCT based dose calculation was evaluated to provide the optimal condition minimizing the error. The CBCT images was acquired under three scatter conditions ("Under-scatter", "Over-scatter", and "Full-scatter") by adjusting amount of scatter materials around a electron density phantom (CIRS062, Tissue Simulation Technology, Norfolk, VA, USA). The CT number uniformities of CBCT images for water-equivalent materials of the phantom were assessed, and the location dependency, either "inner" or "outer" parts of the phantom, was also evaluated. The electron density correction curves were derived from CBCT images of the electron density phantom in each scatter condition. The electron density correction curves were applied to calculate the CBCT based doses, which were compared with the dose based on Fan Beam Computed Tomography (FBCT). Also, 5 prostate IMRT cases were enrolled to assess the accuracy of dose based on CBCT images using gamma index analysis and relative dose differences. As the CT number histogram of phantom CBCT images for water equivalent materials was fitted with a gaussian function, the FHWM (146 HU) for "Full-scatter" condition was the smallest among the FHWM for the three conditions (685 HU for "under scatter" and 264 HU for "over scatter"). Also, the variance of CT numbers was the smallest for the same ingredients located in the center and periphery of the phantom in the "Full-scatter" condition. The dose distributions calculated with FBCT and CBCT images compared in a gamma index evaluation of 1%/3 mm criteria and in the dose difference. With the electron density correction acquired in the same scatter condition, the CBCT based dose calculations tended to be the most accurate. In 5 prostate cases in which the mean equivalent diameter was 27.2 cm, the averaged gamma pass rate was 98% and the dose difference confirmed to be less than 2% (average 0.2%, ranged from -1.3% to 1.6%) with the electron density correction of the "Full-scatter" condition. The accuracy of CBCT based dose calculation could be confirmed that closely related to the CT number uniformity and to the similarity of the scatter conditions for the electron density correction curve and CBCT image. In pelvic cases, the most accurate dose calculation was achievable in the application of the electron density curves of the "Full-scatter" condition.