• Title/Summary/Keyword: 모듈형 베이지안 네트워크

Search Result 9, Processing Time 0.021 seconds

Group Emotion Prediction System based on Modular Bayesian Networks (모듈형 베이지안 네트워크 기반 대중 감성 예측 시스템)

  • Choi, SeulGi;Cho, Sung-Bae
    • Journal of KIISE
    • /
    • v.44 no.11
    • /
    • pp.1149-1155
    • /
    • 2017
  • Recently, with the development of communication technology, it has become possible to collect various sensor data that indicate the environmental stimuli within a space. In this paper, we propose a group emotion prediction system using a modular Bayesian network that was designed considering the psychological impact of environmental stimuli. A Bayesian network can compensate for the uncertain and incomplete characteristics of the sensor data by the probabilistic consideration of the evidence for reasoning. Also, modularizing the Bayesian network has enabled flexible response and efficient reasoning of environmental stimulus fluctuations within the space. To verify the performance of the system, we predict public emotion based on the brightness, volume, temperature, humidity, color temperature, sound, smell, and group emotion data collected in a kindergarten. Experimental results show that the accuracy of the proposed method is 85% greater than that of other classification methods. Using quantitative and qualitative analyses, we explore the possibilities and limitations of probabilistic methodology for predicting group emotion.

Selective Inference in Modular Bayesian Networks for Lightweight Context Inference in Cell Phones (휴대폰에서의 경량 상황추론을 위한 모듈형 베이지안 네트워크의 선택적 추론)

  • Lee, Seung-Hyun;Lim, Sung-Soo;Cho, Sung-Bae
    • Journal of KIISE:Software and Applications
    • /
    • v.37 no.10
    • /
    • pp.736-744
    • /
    • 2010
  • Log data collected from mobile devices contain diverse and meaningful personal information. However, it is not easy to implement a context-aware mobile agent using this personal information due to the inherent limitation in mobile platform such as memory capacity, computation power and its difficulty of analysis of the data. We propose a method of selective inference for modular Bayesian Network for context-aware mobile agent with effectiveness and reliability. Each BN module performs inference only when it can change the result by comparing to the history module which contains evidences and posterior probability, and gets results effectively using a method of influence score of the modules. We adopt memory decay theory and virtual linking method for the evaluation of the reliability and conservation of casual relationship between BN modules, respectively. Finally, we confirm the usefulness of the proposed method by several experiments on mobile phones.

Client-Server System Architecture for Inferring Large-Scale Genetic Interaction Networks (대규모 유전자 상호작용 네트워크 추론을 위한 클라이언트-서버 시스템 구조)

  • Kim, Yeong-Hun;Lee, Pil-Hyeon;Lee, Do-Heon
    • Bioinformatics and Biosystems
    • /
    • v.1 no.1
    • /
    • pp.38-45
    • /
    • 2006
  • We present a client-server system architecture for inferring genetic interaction networks based on Bayesian networks. It is typical to take tens of hours when genome-wide large-scale genetic interaction networks are inferred in the form of Bayesian networks. To deal with this situation, batch-style distributed system architectures are preferable to interactive standalone architectures. Thus, we have implemented a loosely coupled client-server system for network inference and user interface. The network inference consists of two stages. Firstly, the proposed method divides a whole gene set into overlapped modules, based on biological annotations and expression data together. Secondly, it infers Bayesian networks for each module, and integrates the learned subnetworks to a global network through common genes across the modules.

  • PDF

Context Management of Conversational Agent using Two-Stage Bayesian Network (2단계 베이지안 네트워크를 이용한 대화형 에이전트의 문맥 관리)

  • 홍진혁;조성배
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.10 no.1
    • /
    • pp.89-98
    • /
    • 2004
  • Conversational agent is a system that provides users with proper information and maintains the context of dialogue on the natural language. Analyzing and modeling process of user's query is essential to make it more realistic, for which Bayesian network is a promising technique. When experts design the network for a domain, the network is usually very complicated and is hard to be understood. The separation of variables in the domain reduces the size of networks and makes it easy to design the conversational agent. Composing Bayesian network as two stages, we aim to design conversational agent easily and analyze user's query in detail. Also, previous information of dialogue makes it possible to maintain the context of conversation. Actually implementing it for a guide of web pages, we can confirm the usefulness of the proposed architecture for conversational agent.

Bayesian Probability and Evidence Combination For Improving Scene Recognition Performance (장면 인식 성능 향상을 위한 베이지안 확률 및 증거의 결합)

  • Hwang Keum-Sung;Park Han-Saem;Cho Sung-Bae
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.07b
    • /
    • pp.634-636
    • /
    • 2005
  • 지능형 로봇 기술이 발전하면서 영상에서 장면을 이해하는 연구가 많은 관심을 받고 있으며, 최근에는 불확실한 환경에서도 좋은 성능을 발휘할 수 있는 확률적 접근 방법이 많이 연구되고 있다. 본 논문에서는 확률적 모델링이 가능한 베이지안 네트워크(BN)를 이용해서 장면 인식 추론 모듈을 설계하고, 실제 환경에서 얻어진 증거 및 베이지안 추론 결과를 결합하여 분류 성능을 향상시키기 위한 방법을 제안한다. 영상 정보는 시간에 대해 연속성을 가지고 있기 때문에, 증거 정보와 베이지안 추론 결과들을 적절히 결합하면 더 좋은 결과를 예상할 수 있으며, 본 논문에서는 확신 요소(Certainty Factor: CF) 분석에 의한 결합 방법을 사용하였다. 성능 평가 실험을 위해서 SET (Scale Invariant Feature Transform) 기법을 이용하여 물체 인식 처리를 수행하고, 여기서 얻어진 데이터를 베이지안 추론의 증거로 사용하였으며, 전문가의 CF 값 정의에 의한 베이지안 네트워크 설계 방법을 이용하였다.

  • PDF

Analysis and Summary of User's Behavior Patterns in Mobile Devices (모바일 디바이스 사용자의 행동 패턴 분석 및 요약)

  • Jung Myung-Chul;Cho Sung-Bae
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2006.06b
    • /
    • pp.148-150
    • /
    • 2006
  • 최근 모바일 디바이스의 기능이 다양해지면서 현대인에게 없어서는 안 될 필수품이 되었다. 모바일 디바이스의 사용영역이 널어지면서 늘어나는 개인 정보의 활용에 대한 관심이 집중되고 있다. 본 논문에서는 모바일 디바이스에서 사용자의 행동 패턴 분석 및 요약을 위한 지능형 에이전트를 제안한다 사용자의 다양한 행동 및 상태 패턴 분석을 위해 협력적 모듈 베이지안 네트워크를 사용한다. 협력적 모들 베이지안 네트워크는 비슷한 유형의 패턴끼리 모듈로 설계해 상호 협력적으로 작동하여 사용자의 특이성을 추론한다. 사용자에 기억에 남을 만한 특이성를 선택하기 위해 Noisy-OR gate를 적응하여 계산한 특이성간의 연결 강도와 특이성의 우선순위를 바탕으로 사용자의 하루 동안의 행동을 요약하여 구성한다. 추론을 위한 프로토타입을 작성하고 시나리오를 바탕으로 제안한 방법의 유용성을 보인다.

  • PDF

A Bayesian Inference Model for Landmarks Detection on Mobile Devices (모바일 디바이스 상에서의 특이성 탐지를 위한 베이지안 추론 모델)

  • Hwang, Keum-Sung;Cho, Sung-Bae;Lea, Jong-Ho
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.13 no.1
    • /
    • pp.35-45
    • /
    • 2007
  • The log data collected from mobile devices contains diverse meaningful and practical personal information. However, this information is usually ignored because of its limitation of memory capacity, computation power and analysis. We propose a novel method that detects landmarks of meaningful information for users by analyzing the log data in distributed modules to overcome the problems of mobile environment. The proposed method adopts Bayesian probabilistic approach to enhance the inference accuracy under the uncertain environments. The new cooperative modularization technique divides Bayesian network into modules to compute efficiently with limited resources. Experiments with artificial data and real data indicate that the result with artificial data is amount to about 84% precision rate and about 76% recall rate, and that including partial matching with real data is about 89% hitting rate.

A Hierarchical CPV Solar Generation Tracking System based on Modular Bayesian Network (베이지안 네트워크 기반 계층적 CPV 태양광 추적 시스템)

  • Park, Susang;Yang, Kyon-Mo;Cho, Sung-Bae
    • Journal of KIISE:Software and Applications
    • /
    • v.41 no.7
    • /
    • pp.481-491
    • /
    • 2014
  • The power production using renewable energy is more important because of a limited amount of fossil fuel and the problem of global warming. A concentrative photovoltaic system comes into the spotlight with high energy production, since the rate of power production using solar energy is proliferated. These systems, however, need to sophisticated tracking methods to give the high power production. In this paper, we propose a hierarchical tracking system using modular Bayesian networks and a naive Bayes classifier. The Bayesian networks can respond flexibly in uncertain situations and can be designed by domain knowledge even when the data are not enough. Bayesian network modules infer the weather states which are classified into nine classes. Then, naive Bayes classifier selects the most effective method considering inferred weather states and the system makes a decision using the rules. We collected real weather data for the experiments and the average accuracy of the proposed method is 93.9%. In addition, comparing the photovoltaic efficiency with the pinhole camera system results in improved performance of about 16.58%.

Design and Implementation of Intelligent Physics System for Mobile Environment (모바일 환경을 위한 지능형 물리엔진 시스템 설계 및 구현)

  • Kim, Hoi-Chang;Shin, Dong-Kyoo;Shin, Dong-Il;Kim, Soo-Han;Lee, Myung-Su
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2010.06b
    • /
    • pp.28-33
    • /
    • 2010
  • 최근 모바일 게임에 있어서 중요한 이슈는 게임상에서 존재하는 물체들이 사실감과 생동감을 유지하면서도 프로그램의 속도 감소 문제를 발생시키지 않는 방안을 찾는 것이다. 본 논문이 제시하는 내용은 모바일 환경에서의 지능형 물리엔진 아키텍쳐에 대한 것으로 물리엔진으로 구현 한 게임 안의 환경을 인지하고 수집한 수치를 이용, 학습하여 사용자가 컨트롤하는 게임 내의 물체가 최적화 된 움직임을 보일 수 있도록 하는 데 목표를 두고 있다. 이를 위해 모바일 환경에 적합하도록 구현된 물리엔진으로 자동차 주행 시스템 환경 내에서 속성을 추출, 인공지능 모듈에 입력하여 연산량이 비교적 적은 베이지안 네트워크 알고리즘을 통해 분석하며 이를 평가한다.

  • PDF