Kim, Sunhee;Lee, Jooyoung;Choi, Seo Gyeong;Ji, Seunghun;Kang, Jeemin;Kim, Jongin;Kim, Dohee;Kim, Boryong;Cho, Eungi;Kim, Hojeong;Jang, Jeongmin;Kim, Jun Hyung;Ku, Bon Hyeok;Park, Hyung-Min;Chung, Minhwa
Phonetics and Speech Sciences
/
v.12
no.4
/
pp.81-90
/
2020
This paper describes a method of building Korean conversational speech data in the emergency medical domain and proposes an annotation method for the collected data in order to improve speech recognition performance. To suggest future research directions, baseline speech recognition experiments were conducted by using partial data that were collected and annotated. All voices were recorded at 16-bit resolution at 16 kHz sampling rate. A total of 166 conversations were collected, amounting to 8 hours and 35 minutes. Various information was manually transcribed such as orthography, pronunciation, dialect, noise, and medical information using Praat. Baseline speech recognition experiments were used to depict problems related to speech recognition in the emergency medical domain. The Korean conversational speech data presented in this paper are first-stage data in the emergency medical domain and are expected to be used as training data for developing conversational systems for emergency medical applications.
Journal of the Computational Structural Engineering Institute of Korea
/
v.34
no.1
/
pp.9-18
/
2021
Recently, the rapid proliferation, introduction, and application of the fourth industrial revolution technology has emerged as a trend in the construction market. Building Information Model (BIM) technology is a multidimensional information system that forms the basis of the fourth industrial revolution technology. The river sector utilizing this information-based system is also being actively reviewed, for example, the current measures for maintenance. In recent years, active research and current work should be done to reflect the need for river experts to introduce BIM into the river field. In addition, the development of tools and support software for establishing various information systems is essential for the activation of facility maintenance information systems reflecting advanced technology and to establish and operate management plans. A study on the maintenance of river facilities involves using existing drawings to build a three-dimensional (3D) information model, check the damage utilizing it, and inform it, and utilize it as the data for maintenance reinforcement. This study involved determining a method to build a river facility without the existing information system and using the property maintenance information with 3D modeling to provide a more effective and highly utilized management plan to check maintenance operations and manage damages.
Journal of the Korea institute for structural maintenance and inspection
/
v.24
no.5
/
pp.95-102
/
2020
For the purpose of developing a PE fiber-reinforced highly ductile cementitious composite having high tensile strain capacity more than 2% under the condition of containing aggregates with large particle size, this study investigated the tensile behavior of composites according to the particle size and distribution of aggregates in the composite. Compared with the mixture containing silica sand of which particle size is less than 0.6 mm, mixtures containing river sand and/or gravel with the maximum particle size of 2.36 mm, 4.75 mm, 5.6 mm, 6.7 mm were considered in the experimental design. The particle size distributions of aggregates were adjusted for the optimized distribution curves obtained from modified A&A model by blending different sizes of aggregates. All the mixtures presented clear strain-hardening behavior in the direct tensile tests. The mixtures with the blended aggregates to meet the optimum curves of aggregate size distributions showed higher tensile strain capacity than the mixture with silica sand. It was also found that the tensile strain capacity was improved as the maximum size of aggregate increased which resulted in wider particle size distribution. The mixtures with the maximum size of 5.6 mm and 6.7 mm presented very high tensile strain capacities of 4.83% and 5.89%, respectively. This study demonstrated that it was possible to use coarse aggregates in manufacturing highly ductile fiber-reinforced cementitous composite by adjusting the particle size distribution.
Water resources which is formed of surface and groundwater, are considered as one of the pivotal natural resources worldwide. Since last century, the rapid population growth as well as accelerated industrialization and explosive urbanization lead to boost demand for groundwater for domestic, industrial and agricultural use. In fact, better management of groundwater can play crucial role in sustainable development; therefore, determining accurate location of groundwater based groundwater potential mapping is indispensable. In recent years, integration of machine learning techniques, Geographical Information System (GIS) and Remote Sensing (RS) are popular and effective methods employed for groundwater potential mapping. For determining the status of the integrated approach, a systematic review of 94 directly relevant papers were carried out over the six previous years (2015-2020). According to the literature review, the number of studies published annually increased rapidly over time. The total study area spanned 15 countries, and 85.1% of studies focused on Iran, India, China, South Korea, and Iraq. 20 variables were found to be frequently involved in groundwater potential investigations, of which 9 factors are almost always present namely slope, lithology (geology), land use/land cover (LU/LC), drainage/river density, altitude (elevation), topographic wetness index (TWI), distance from river, rainfall, and aspect. The data integration was carried random forest, support vector machine and boost regression tree among the machine learning techniques. Our study shows that for optimal results, groundwater mapping must be used as a tool to complement field work, rather than a low-cost substitute. Consequently, more study should be conducted to enhance the generalization and precision of groundwater potential map.
KIPS Transactions on Computer and Communication Systems
/
v.10
no.3
/
pp.71-80
/
2021
The selection of an appropriate neural network algorithm is an important step for accurate data prediction in machine learning. Many algorithms based on basic artificial neural networks have been devised to efficiently predict future data. These networks include deep neural networks (DNNs), recurrent neural networks (RNNs), long short-term memory (LSTM) networks, and gated recurrent unit (GRU) neural networks. Developers face difficulties when choosing among these networks because sufficient information on their performance is unavailable. To alleviate this difficulty, we evaluated the performance of each algorithm by comparing their errors and processing times. Each neural network model was trained using a tax dataset, and the trained model was used for data prediction to compare accuracies among the various algorithms. Furthermore, the effects of activation functions and various optimizers on the performance of the models were analyzed The experimental results show that the GRU and LSTM algorithms yields the lowest prediction error with an average RMSE of 0.12 and an average R2 score of 0.78 and 0.75 respectively, and the basic DNN model achieves the lowest processing time but highest average RMSE of 0.163. Furthermore, the Adam optimizer yields the best performance (with DNN, GRU, and LSTM) in terms of error and the worst performance in terms of processing time. The findings of this study are thus expected to be useful for scientists and developers.
In this study, the main influencing factors of the occurrence of cyanobacteria at each of the eight Multifunctional weirs were derived using a random forest, and a categorical prediction model based on a Algal bloom warning system was developed. As a result of examining the importance of variables in the random forest, it was found that the upstream points were directly affected by weir operation during the occurrence of cyanobacteria. This means that cyanobacteria can be managed through efficient security management. DO and E.C were indicated as major influencers in midstream. The midstream section is a section where large-scale industrial complexes such as Gumi and Gimcheon are concentrated as well as the emissions of basic environmental facilities have a great influence. During the period of heatwave and drought, E.C increases along with the discharge of environmental facilities discharged from the basin, which promotes the outbreak of cyanobacteria. Those monitoring sites located in the middle and lower streams are areas that are most affected by heat waves and droughts, and therefore require preemptive management in preparation for the outbreak of cyanobacteria caused by drought in summer. Through this study, the characteristics of cyanobacteria at each point were analyzed. It can provide basic data for policy decision-making for customized cyanobacteria management.
Asia-Pacific Journal of Business Venturing and Entrepreneurship
/
v.15
no.6
/
pp.81-94
/
2020
Based on innovative technologies and new start-up ideas, startups have been actively researched on the entrepreneurship needed to strengthen the organization's capabilities and generate results in the start-up process. This study studied the entrepreneurial orientation on the performance of startups in the Philippines and the financial and non-financial performance of enterprises. This study carried out not only the entrepreneurial orientation to the performance of Filipino startups but also the role of social capital as parameters in the performance of enterprises. The empirical research was completed for 93 Philippine startups and the suitability of the research model was evaluated with a PLS-based structural equation model. The results of the study first confirmed that the enterprise orientation of Philippine startups has a positive impact on both financial and non-financial performance of the enterprises. Second, the entrepreneurial orientation of Philippine startups has been shown to have a positive effect on both the structural, cognitive and relational dimensions of social capital. Third, it was found that the relevant dimensions of social capital mediated both the corporate orientation and the relationship between the financial and non-financial performance of the entity. Entrepreneurial orientation has been confirmed to be directly or indirectly affecting the performance of startups through social capital. These findings reaffirmed that entrepreneurial orientation is still a valid important factor in developing countries as well as in countries such as Korea and the United States. Based on this study, we have identified the need for research from a more integrated perspective, such as the concept of strategic orientation. Finally, practical implications were presented to reflect the findings analyzed.
Intracranial hemorrhage (ICH) refers to acute bleeding inside the intracranial vault. Not only does this devastating disease record a very high mortality rate, but it can also cause serious chronic impairment of sensory, motor, and cognitive functions. Therefore, a prompt and professional diagnosis of the disease is highly critical. Noninvasive brain imaging data are essential for clinicians to efficiently diagnose the locus of brain lesion, volume of bleeding, and subsequent cortical damage, and to take clinical interventions. In particular, computed tomography (CT) images are used most often for the diagnosis of ICH. In order to diagnose ICH through CT images, not only medical specialists with a sufficient number of diagnosis experiences are required, but even when this condition is met, there are many cases where bleeding cannot be successfully detected due to factors such as low signal ratio and artifacts of the image itself. In addition, discrepancies between interpretations or even misinterpretations might exist causing critical clinical consequences. To resolve these clinical problems, we developed a diagnostic model predicting intracranial bleeding and its subtypes (intraparenchymal, intraventricular, subarachnoid, subdural, and epidural) by applying deep learning algorithms to CT images. We also constructed a visualization tool highlighting important regions in a CT image for predicting ICH. Specifically, 1) 27,758 CT brain images from RSNA were pre-processed to minimize the computational load. 2) Three different CNN-based models (ResNet, EfficientNet-B2, and EfficientNet-B7) were trained based on a training image data set. 3) Diagnosis performance of each of the three models was evaluated based on an independent test image data set: As a result of the model comparison, EfficientNet-B7's performance (classification accuracy = 91%) was a way greater than the other models. 4) Finally, based on the result of EfficientNet-B7, we visualized the lesions of internal bleeding using the Grad-CAM. Our research suggests that artificial intelligence-based diagnostic systems can help diagnose and treat brain diseases resolving various problems in clinical situations.
Various customizing services are also being introduced in the fashion industry in line with the diversification of consumer tastes and the demand for small production of multiple varieties. However, barriers to entry are high for consumers who are not customized, and various functions are rather complicated. This study selected the three platforms that provide the most similar services to Marple, the No. 1 fashion platform sales, as comparative models and used them as a basic study for web-based fashion customization platform design through case analysis. As a research method, theoretical examinations were conducted through literature surveys, followed by web analysis based on layout, menu, color, icon, and interaction. The study found that the placement of options, the composition of menu windows, the number of point colors, and the use of icons without functions of metaphores hindered the use of customizing platforms. This work proposes a solution, and aims to contribute to increasing the usability of future customizing web by comprehensively analyzing the visual shaping elements of web platform design.
As a 'Senior Citizen' by applying an active theory based on a role model, elderly volunteers may seek to impart health to the local communities through volunteer activities. In addition, the strategies for promoting the elderly participation volunteering actions may apply with the lifelong education/learning model for citizenship development, which intends to expand the elder volunteer activity participants and the areas of volunteering actions. In this study, we attempted to find out how volunteering fieldworkers experience and perceive volunteer-promoting strategies for senior volunteers drawn from previous literatures and studies on promoting elderly volunteer actions. For the purpose of the study, we conducted in-depth interviews with 12 fieldworkers who worked senior-welfare centers and volunteer centers in Seoul and Kyeong-gi area. We used the directed-content analysis, which categorized 12 themes/categories commonly mentioned from previous literatures and studies. Within these categories, the analysis was made to derive issues and improve promoting strategies specified from the interviewees. The outcomes of the study included the insights regarding what promoting-strategies might be necessary to enrich existing senior volunteer actions. The study highlighted not only reviews volunteer fieldworkers' current experiences with senior volunteers but also barrier and practical suggestions for the continuous advances of senior volunteer programs and strategies.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.