• Title/Summary/Keyword: 면내 극한 강도

Search Result 9, Processing Time 0.02 seconds

In-plane buckling strength of fixed arch ribs subjected vertical distributed loading (수직 등분포 하중을 받는 고정 지점 포물선 아치 리브의 면내 좌굴 강도)

  • Moon, Ji Ho;Yoon, Ki Yong;Kim, Sung Hoon;Lee, Hak Eun
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.4 s.77
    • /
    • pp.439-447
    • /
    • 2005
  • When arch ribs are subjected to vertical loading, they may buckle suddenly towards the in-plane direction. Therefore, the designer should consider their in-plane stability. In this paper, the in-plane elastic and inelastic buckling strength of parabolic, fixed arch ribs subjected to vertical distributed loading were investigated using the finite element method. A finite element model for the snap-through and inelastic behavior of arch ribs was verified using other researchers' test results. The ultimate strength of arch ribs was determined by taking into account their large deformation, material inelasticity, and residual stress. Finally, the finite element analysis results were compared with the EC3 design code.

In-plane buckling strength of fixed parabolic arch (고정지점 포물선 아치의 면내 좌굴강도)

  • Moon, Ji Ho;Yoon, Ki Yong;Cho, Yong Rae;Lee, Hak Eun
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.3
    • /
    • pp.301-310
    • /
    • 2006
  • If arches are braced by lateral restraints, the ultimate strength of arches is determined by in-plane buckling and plastic bending collapse. This paper is conducted to investigate the in-plane nonlinear elastic and inelastic buckling behavior and the strength of fixed parabolic arches in uniform compresion, as well as to study arch behaviors against non-uniform in-plane compression and bending. As shown by the results, the limit slenderness ratio is suggested to classify the bucklingmode. Buckling strength of fixed parabolic arches under uniform compresion are evaluated using buckling curve for a straight column. Finally, an interaction e quation for arches under combined axial compresion and bending action is proposed.

Characteristic of Buckling and Ultimate Strength of the Perforated Stiffened Plate (유공보강판의 좌굴 및 극한강도 특성에 관한 연구)

  • Park Joo-Shin;Ko Jae-Yong;Oh Kyoung-Gun
    • Journal of Navigation and Port Research
    • /
    • v.30 no.6 s.112
    • /
    • pp.439-446
    • /
    • 2006
  • In ship structures many of the structural plates have cutouts, for example, at inner bottom structure, girder, upper deck hatch, floor and dia-frame etc. In the case where a plate has a cutout it experiences reduced buckling and ultimate strength and at the same time the in-plane stress under compressive load produced by hull girder bending will be redistributed In general, actual ship structure adopted reinforcement of stiffener around the cutout in order to preventing from buckling so it need to examine a buckling and ultimate strength behaviour considering a cutout because In many ship yards used class rule for calculating buckling strength but it is difficult to evaluate perforate stiffened plate with random size. In the present paper, we investigated several kinds of perforated stiffened model from actual ship and then was performed finite element series analysis varying the cutout ratio, web height, thickness and type of cross-section using commercial FEA program(ANSYS) under compressive load.

Evaluation of In-plane Buckling and Ultimate Strength for Braced Arch Ribs (브레이스트 아치 리브의 면내 좌굴 및 극한강도 평가)

  • Park, Yong Myung;Heo, Taek Young;Lee, Pil Goo;Noh, Kyeung Bae
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.6 s.73
    • /
    • pp.759-768
    • /
    • 2004
  • The parametric analysis of vertically braced steel pipe arch ribs was performed to evaluate their in-plane buckling strengths and ultimate load-carrying capacities. The elastic and plastic behavior of braced arch ribs, unlike those of the usual single arch ribs, are affected by such factors as the flexural rigidity of the brace member, brace and pipe ribs spacing, loading situation, and arch curvature. To analyze these effects, several parameters were included, such as the rise-to-span ratio, the second moment of the inertia ratio of the rib to the brace member, the space ratio of the brace, the space ratio of the upper and lower ribs, the initial crookedness, the slenderness ratios of the braced arch ribs, and the loading conditions were considered with live-load-to-dead-load ratios. Based on the results of the parametric analyses, a proper profile of the braced arch rib was proposed. A large-scale structural experiment was also performed to evaluate the ultimate strength of the braced arch rib. The test results were determined to reasonably coincide with the analytical ones.

Evaluation of Shear Strength of Unreinforced Masonry Walls Retrofitted by Fiber Reinforced Polymer Sheet (FRP로 보강한 비보강 조적 벽체의 전단강도 산정)

  • Bae, Baek-Il;Yun, Hyo-Jin;Choi, Chang-Sik;Choi, Hyun-Ki
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.3
    • /
    • pp.305-313
    • /
    • 2012
  • Unreinforced masonry buildings represent a significant portion of the existing and historical buildings around the world. Recent earthquakes have shown the need for seismic retrofitting for these types of buildings. Various types of retrofitting materials (i.e., shotcrete, ECC and Fiber Reinforced Polymer sheets (FRPs)) for unreinforced masonry buildings (URM) have been developed. Engineers prefer to use FRPs, because these materials enhance the shear strength of the wall without expansion of wall sectional area and adding weight to the total structure. However, the complexity of the mechanical behavior of the masonry wall and the lack of experimental data from walls retrofitted by FRPs may cause problems for engineers to determine an appropriate retrofitting level. This paper investigate in-plane behavior of URM and retrofitted masonry walls using two different types of FRP materials to determine and provide information for the retrofitting effect of FRPs on masonry shear walls. Specimens were designed to idealize the wall of a low-rise apartment which was built in 1970s in Korea with no seismic reinforcements with an aspect ratio of 1. Retrofitting materials were carbon FRP and Hybrid sheets which have different elastic modulus and ultimate strain capacities. Consequently, this study evaluated the structural capacity of masonry shear walls and the retrofitting effect of an FRP sheet for in-plane behavior. Also, the results were compared to the results obtained from the evaluation method for a reinforced concrete beam retrofitted with FRPs.

In-plane Stress Analysis of Relating Composite Disks (복합재료 회전원판의 면내응력 해석)

  • Koo Kyo-Nam
    • Composites Research
    • /
    • v.18 no.4
    • /
    • pp.8-13
    • /
    • 2005
  • Rotating circular disks are widely used in data storage devices as well as in traditional industrial machines. Faster rotating speed is required in data storage devices for higher data transfer rate. In this Paper an application of composite materials to CD is proposed to increase critical speeds and the strength analysis was performed. A differential equation of displacement is derived for the analytic stress distribution of rotating polar orthotropic disk. The stress distributions for typical GFRP and CFRP disks and the maximum allowable speeds subjected to a constraint of tensile strength are presented in addition to polycarbonate disk. The results show that the application of CFRP to rotating disk can increase the maximum allowable rotating speed but this may not be applicable to GFRP disk.

In-plane Bending Moment Capacity of T-Joints in the Circular Hollow Section of New High Strength Steel Subjected to Cyclic Loadings (반복하중을 받는 고강도 원형강관의 T형 접합의 면내 휨모멘트 내력)

  • Lee, Sung-Ju;Kim, Joo-Woo;Kim, Sang-Seup;Lee, Myung-Jae;Yang, Jae-Geun
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.2
    • /
    • pp.169-177
    • /
    • 2011
  • This paper presents the results of the systematic finite element analysis of the in-plane bending moment of T-joints subjected to cyclic loadings. T-joints were fabricated using high-strength, circular, hollow sections. Three-dimensional, nonlinear finite element models of the welded T-joints were constructed to investigate the strength, rotational-stiffness characteristics, and failure modes. A wide scope of structural behaviors explain the influence of the joint geometric parameters, such as the chord and brace wall slenderness ratios and the ratio of the brace to the chord diameter, as well as the yield strength ratios and compressive-chord-stress effects on the ultimate in-plane bending moment capacity of the T-joint.

Evaluation on In-plane Shear Strength of Lightweight Composite Panels (경량 복합패널의 면내 전단 성능 평가)

  • Hwang, Moon-Young;Kang, Su-Min;Lee, Byung-yun;Kim, Sung-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.1
    • /
    • pp.9-20
    • /
    • 2019
  • The number of natural disasters in Korea, such as earthquakes, is increasing. As a result, there is growing need for temporary residences or shelters for disaster conditions. The aim of this study was to produce post-disaster refugees housing differentiated from existing shelters using lightweight composite panels. To accomplish this, the structural performance of lightweight composite panels was validated, and an in-plane shear strength test was conducted according to the ASTM E72 criteria among the performance test methods for panels. As a result of the experiment, the maximum load for each specimen under an in-plane shear load was determined. All the experiments ended with the tear of the panel's skin section. The initial stiffness of the specimens was consistent with that predicted by the calculations. On the other hand, local crushing and tearing, as well as the characteristics of the panel, resulted in a decrease in stiffness and final failure. Specimens with an opening showed a difference in stiffness and strength from the basic experiment. The maximum load and the effective area were found to be proportional. Through this process, the allowable shear stress of the specimens was calculated and the average allowable shear stress was determined. The average ultimate shear stress of the lightweight composite panels was found to be $0.047N/mm^2$, which provides a criterion of judgement that could be used to expect the allowable load of lightweight composite panels.

Analysis on In-Plane Behavior of Unreinforced Masonry Walls (비보강 조적벽체의 면내거동 해석)

  • 김장훈;권기혁
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.6 no.3
    • /
    • pp.1-10
    • /
    • 2002
  • A series of unreinforced masonry(URM) walls were analytically investigated by FEM for a limited version of seismic in-plane performance. For this, URM walls were assumed to be continum and modeled as isotropic plane stress elements, within which the nature of cracking was propogated. Accordingly, behavioral mode of cracking in URM was modeled by smeared-crack approach. Total of 70 cases were considered for various parameters such as axial load ratio, aspect ratio and effective section area ratio due to the existence of opening, etc. The analysis results indicate that these parameters significantly and interactively influence over the ultimate strength of URM walls. Finally, it is suggested that the response modification factor for URM adopted in the current Korean Standard should be validated considering various forms of brittleness and probable failure modes in URM.