• Title/Summary/Keyword: 면내하중

Search Result 132, Processing Time 0.018 seconds

Secondary Buckling Behaviour of Plate under Inpane Compressive Loading (면내압축하중(面內壓縮荷重)을 받는 판(板)의 2차좌굴거동(次座屈擧動)에 관한 연구(硏究))

  • J.Y. Ko;T. Yao;J.K. Paik
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.33 no.3
    • /
    • pp.66-80
    • /
    • 1996
  • Recently, HT steel has been widely used in structure, and this enables to reduce the plate thickness. To use the HT steel effectively for a ship hull, the plate thickness becomes thin so that plate buckling may take place. Therefore, precise assessment of the behaviour of plat above primary buckling load is important. The plate under the load, that is called, secondary buckling load may undergo abrupt changes in wave form after primary buckling. This is very important when the collapse strength of the whole structures is considered. From this point of view, this paper discusses secondary buckling behaviour of thin plate under inplane compressive loading. A elastic large deflection analysis of plates with initial imperfection is performed assuming uniaxial compression, respectively, and the influence of secondary buckling is investigated. It is known that square plate is not influenced by non-symmetrical deflection coefficient but influenced by symmetrical deflection coefficient. Also, it has been found that rectangular plate($\alpha$=a/b) is influenced by all deflection coefficient, and the reduction of inplane stiffness of the plate after primary buckling is continued.

  • PDF

Damage Index Evaluation Based on Dissipated Energy of SCH 40 3-Inch Carbon Steel Pipe Elbows Under Cyclic Loading (주기적 하중을 받는 SCH 40 3-Inch 탄소강관엘보의 소산에너지 기반의 손상지수 평가)

  • Kim, Sung-Wan;Yun, Da-Woon;Jeon, Bub-Gyu;Kim, Seong-Do
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.1
    • /
    • pp.112-119
    • /
    • 2021
  • The failure mode of piping systems due to seismic loads is the low-cycle fatigue failure with ratcheting, and it was found that the element in which nonlinear behavior is concentrated and damage occurs is the elbow. In this study, to quantitatively express the failure criteria for a pipe elbow of SCH40 3-inch carbon steel under low-cycle fatigue, the limit state was defined as leakage, and the in-plane cyclic loading test was conducted. For the carbon steel pipe elbow, which is the vulnerable part to seismic load of piping systems, the damage index was represented using the moment-deformation angle relationship, and it was compared and analyzed with the damage index calculated using the force-displacement relationship. An attempt was made to quantitatively express the limit state of the carbon steel pipe elbow involving leakage using the damage index, which was based on the dissipated energy caused by repeated external forces.

Exact Solutions for Vibration and Buckling of Rectangular Plates Loaded at Two Simply-Supported Opposite Edges by In-Plane Moments, Free along the Other Two Edges (면내(面內) 모멘트를 받는 단순지지된 두 모서리와 자유경계인 나머지 두 모서리를 갖는 직사각형 판의 진동과 좌굴의 엄밀해)

  • Shim, Hyun-Ju;Woo, Ha-Young;Kang, Jae-Hoon
    • Journal of Korean Association for Spatial Structures
    • /
    • v.6 no.4 s.22
    • /
    • pp.81-92
    • /
    • 2006
  • This paper presents exact solutions for the free vibrations and buckling of rectangular plates having two opposite, simply supported edges subjected to linearly varying normal stresses causing pure in-plane moments, the other two edges being free. Assuming displacement functions which are sinusoidal in the direction of loading (x), the simply supported edge conditions are satisfied exactly. With this the differential equation of motion for the plate is reduced to an ordinary one having variable coefficients (in y). This equation is solved exactly by assuming power series in y and obtaining its proper coefficients (the method of Frobenius). Applying the free edge boundary conditions at y=0, b yields a fourth order characteristic determinant for the critical buckling moments and vibration frequencies. Convergence of the series is studied carefully. Numerical results are obtained for the critical buckling moments and some of their associated mode shapes. Comparisons are made with known results from less accurate one-dimensional beam theory. Free vibration frequency and mode shape results are also presented. Because the buckling and frequency parameters depend upon Poisson's ratio ( V ), results are shown for $0{\leq}v{\leq}0.5$, valid for isotropic materials.

  • PDF

Characteristic of Buckling and Ultimate Strength of the Perforated Stiffened Plate (유공보강판의 좌굴 및 극한강도 특성에 관한 연구)

  • Park Joo-Shin;Ko Jae-Yong;Oh Kyoung-Gun
    • Journal of Navigation and Port Research
    • /
    • v.30 no.6 s.112
    • /
    • pp.439-446
    • /
    • 2006
  • In ship structures many of the structural plates have cutouts, for example, at inner bottom structure, girder, upper deck hatch, floor and dia-frame etc. In the case where a plate has a cutout it experiences reduced buckling and ultimate strength and at the same time the in-plane stress under compressive load produced by hull girder bending will be redistributed In general, actual ship structure adopted reinforcement of stiffener around the cutout in order to preventing from buckling so it need to examine a buckling and ultimate strength behaviour considering a cutout because In many ship yards used class rule for calculating buckling strength but it is difficult to evaluate perforate stiffened plate with random size. In the present paper, we investigated several kinds of perforated stiffened model from actual ship and then was performed finite element series analysis varying the cutout ratio, web height, thickness and type of cross-section using commercial FEA program(ANSYS) under compressive load.

Finite Element Analysis of Reinforced Concrete Masonry Infilled Frames with Different Masonry Wall Thickness Subjected to In-plane Loading (채움벽 두께에 따른 철근콘크리트 조적채움벽 골조의 면내하중에 대한 유한요소해석)

  • Kim, Chungman;Yu, Eunjong;Kim, Minjae
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.1
    • /
    • pp.85-93
    • /
    • 2016
  • In this study, finite element analyses of masonry infilled frames using a general purpose FE program, ABAQUS, were conducted. Analysis models consisted of the bare frame, infilled frames with masonry wall thickness of 0.5B and 1.0B, respectively. The masonry walls were constructed using the concrete bricks which were generally used in Korea as infilled wall. The material properties of frames and masonry for the analysis were obtained from material tests. However, four times increased the tensile strength was used for 1.0B wall, which is seemingly due to the differences in locating the bricks. The force-displacement relation and development of crack from the FE analysis were very similar to those from the experiments. From the FEA results, contact force between the frame and masonry, distribution of shear force and bending moments in frame members were analyzed. Obtained contact stress shows a trianglur distribution, and the contact length for 0.5B speciment and 1.0B specimen were close to the value estimated using ASCE 41-06 equation and ASCE 41-13 equation, respectively. Obtained shear force and bending moment distribution seems to replicate actual behavior which originates from the contact stress and gap between the frame and masonry.

Development of Analytical Model to Predict the Inelastic Moment Capacity of Reinforced Concrete and Masonry Shear Wall (전단벽 구조물의 모멘트 저항능력에 관한 비탄성 해석모델개발)

  • 홍원기;이호범;변근주
    • Magazine of the Korea Concrete Institute
    • /
    • v.5 no.4
    • /
    • pp.123-134
    • /
    • 1993
  • A rapid progress has been made over last decade in the state-of-the-art earthquake structura1 engineering towards a better understanding of both the earthqauke ground motion and structural response. These efforts seek to ensure that there will be no serious injury or loss of life in the event of earthquake, and that structures can be built at minimum cost. The design of structures in general, concrete structures in particular, to resist strong ground input motions is not a simple matter, and analytical models for such structures must be developed from a design perspective that accounts for the complexities of the structural responses. The primary obj ective of earthquake structural engineering research is to ensure the safety of structures by understanding and improving a design methodology. Ideally, this would require the development of an analytical model related to a design methodology that ensures a ductile performance. For the accurate assessment of the adequacy of analytically developed model, experiments conducted to study the inplane inelastic cyclic behavior of structures should verify the analytical approach. The fundamental goal of this paper is to present and demonstrate experimentally verified analytical methods that provide the adequate degree of safety and confidience in the behavior of reinforced concrete structural components. This study further attempts to extend the developed modeling techruque for use by practicing structural engineers for both the analysis and design.Plication of the relaxed diaphragm through left thoracotomy was done and result was excellent as seen on Fig. 5. Cause of eventration of the left hemidiaphragm was due to paralysis of the left phrenic nerve which was tested during thoracotomy.

A Study on the Ultimate Strength Behavior for Ship Perforated Stiffened Plate (선체 유공보강판의 최종강도 거동에 관한 연구)

  • Ko Jae-Yong;Lee Jun-Kyo;Park Joo-Shin;Bae Dong-Kyun
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2005.05a
    • /
    • pp.141-146
    • /
    • 2005
  • Ship have cutout inner bottom and girder and floor etc. Ship's structure is used much, and structure strength must be situated, but establish new concept when high stress interacts sometimes fatally the area. There is no big problem usually by aim of weight reduction, a person and change of freight, piping etc. Because cutout's existence grow up in this place, and, elastic buckling strength by load causes large effect in ultimate strength. Therefore, stiffened perforated plate considering buckling strength and ultimate strength is one of important design criteria which must examine when decide structural concept at initial design. Therefore, and, reasonable buckling strength about perforated stiffened plate need to ultimate strength limited design . Calculated ultimate strength varied several web height and cutout's dimension, and thickness in this investigated data. Used program(ANSYS) applied F.E.A code based on finite element method.

  • PDF

A Study on the Geometric Parameters that Influence the Trapezoidally Corrugated Webs Under Partial Edge Loading (제형파형강판의 지압 거동에 영향을 미치는 기하학적 인자에 관한 연구)

  • Choi, Yong Ju;Yi, Jong Won;Shin, Chul Ho;Lee, Hak Eun
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.1
    • /
    • pp.81-91
    • /
    • 2006
  • The corrugated web is a plate that was manufactured with a corrugated shape. It is widely used in bridges, buildings, and culverts. A girder with a corrugated web can be crippled by local, in-plane compressive loads. Due to its high out-of-plane strength, however, a stiffener is usually not needed in trapezoidally corrugated plates, and the corrugated profile of the web can change the boundary condition of the edge load. Some researchers have studied the strength of the partial-edge loading of the trapezoidally corrugated web, but they have not considered the profile of corrugation in their studies. This paper investigates the influence of the corrugate profile. A parametric study was conducted on the shape parameter using the finite-element method. In this parametric study, the relationship between the corrugated shape and the partial-edge strength was also investigated by dividing the partial-edge strength into the web capacity and the flange capacity.

Buckling Analysis of Box-typed Structures using Adaptive Shell Finite Elements (적응적 쉘유한요소를 이용한 박스형 구조물의 좌굴해석)

  • Song, Myung-Kwan;Kim, Sun-Hoon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.3
    • /
    • pp.265-272
    • /
    • 2007
  • The finite element linear buckling analysis of folded plate structures using adaptive h-refinement methods is presented in this paper. The variable-node flat shell element used in this study possesses the drilling D.O.F. which, in addition to improvement of the element behavior, permits an easy connection to other elements with six degrees of freedom per node. The Box-typed structures can be analyzed using these developed flat shell elements. By introducing the variable-node elements some difficulties associated with connecting the different layer patterns, which are common in the adaptive h-refinement on quadrilateral mesh, can be overcome. To obtain better stress field for the error estimation, the super-convergent patch recovery is used. The convergent buckling modes and the critical loads associated with these modes can be obtained.

Estimation of Buckling and Ultimate Strength of a Perforated Plate under Thrust (면내압축하중을 받는 유공판의 좌굴 및 최종강도 평가에 관한 연구)

  • Ko, Jae-Yong;Park, Joo-Shin;Joo, Jong-Gil
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.10 no.2 s.21
    • /
    • pp.41-47
    • /
    • 2004
  • Plate has cutout inner bottom and girder and Door etc. in hull construction absence is used much, and this is strength in case must be situated, but establish in region that high stress interacts sometimes fatally in region that there is no big problem usually by purpose of weight reduction, a person and freight movement, piping etc.. Because cutout‘s existence is positioning in this place, and, elastic bucking strength by load causes large effect in ultimate strength. Therefore, perforated plate elastic bucking strength and ultimate strength is one of important design criteria to decide structural elements size at early structure design step of a ship. Therefore, we need reasonable & reliable design formula for elastic bucking strength of the perforated plate. The author computed numerically ultimate strength change about several aspect ratios, cutout dimension, and plate thickness by using ANSYS Finite element analysis code based on finite element method in this paper.

  • PDF