• Title/Summary/Keyword: 면내진동

Search Result 93, Processing Time 0.027 seconds

Free Vibrations of Shear Deformable Circular Arches with Rotationally Flexible Supports (전단변형을 고려한 회전 가능한 지점을 갖는 원호 아치의 자유진동)

  • Oh, Sang-Jin;Yoon, Hee-Min;Park, Kwang-Kyou
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.1181-1184
    • /
    • 2007
  • The differential equations governing free, in-plane vibrations of linearly elastic circular arches with rotationally flexible supports, including the effects of rotatory inertia, shear deformation and axial deformation, are solved numerically using the corresponding boundary conditions. The lowest four natural frequencies and the corresponding mode shapes are obtained over a range of non-dimensional system parameters: the subtended angle, the slenderness ratio, and the rotational spring stiffness.

  • PDF

Exact Solutions for Vibration and Buckling of Rectangular Plates Loaded at Two Simply-Supported Opposite Edges by In-Plane Moments, Free along the Other Two Edges (면내(面內) 모멘트를 받는 단순지지된 두 모서리와 자유경계인 나머지 두 모서리를 갖는 직사각형 판의 진동과 좌굴의 엄밀해)

  • Shim, Hyun-Ju;Woo, Ha-Young;Kang, Jae-Hoon
    • Journal of Korean Association for Spatial Structures
    • /
    • v.6 no.4 s.22
    • /
    • pp.81-92
    • /
    • 2006
  • This paper presents exact solutions for the free vibrations and buckling of rectangular plates having two opposite, simply supported edges subjected to linearly varying normal stresses causing pure in-plane moments, the other two edges being free. Assuming displacement functions which are sinusoidal in the direction of loading (x), the simply supported edge conditions are satisfied exactly. With this the differential equation of motion for the plate is reduced to an ordinary one having variable coefficients (in y). This equation is solved exactly by assuming power series in y and obtaining its proper coefficients (the method of Frobenius). Applying the free edge boundary conditions at y=0, b yields a fourth order characteristic determinant for the critical buckling moments and vibration frequencies. Convergence of the series is studied carefully. Numerical results are obtained for the critical buckling moments and some of their associated mode shapes. Comparisons are made with known results from less accurate one-dimensional beam theory. Free vibration frequency and mode shape results are also presented. Because the buckling and frequency parameters depend upon Poisson's ratio ( V ), results are shown for $0{\leq}v{\leq}0.5$, valid for isotropic materials.

  • PDF

Dynamic modeling and analysis of curved beams (곡률을 가지는 보의 동적 모델링 및 해석)

  • 이대형;강병식;홍성욱;박중윤
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.609-612
    • /
    • 1997
  • This paper deals with in-plane vibration analysis of curved beams. The exact dynamic element method is applied to obtain the dynamic model for curved beams. Numerical examples are provided to validate the proposed modeling and analysis method. The numerical results show that the proposed method is useful for the dynamic analysis of curved beams.

  • PDF

Impact Force and Acoustic Analysis on Composite Plates with In-plane Loading (면내하중을 받는 복합적층판에 대한 충격하중 및 음향 해석)

  • Kim, Sung-Joon;Hwang, In-Hee;Hong, Chang-Ho
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.2
    • /
    • pp.179-186
    • /
    • 2012
  • The potential hazards resulting from a low-velocity impact(bird-strike, tool drop, runway debris, etc.) on aircraft structures, such as engine nacelle or leading edges has been a long-term concern to the aircraft industry. Certification authorities require that exposed aircraft components must be tested to prove their capability to withstand low-velocity impact without suffering critical damage. In most of the past research studies unloaded specimens have been used for impact tests, however, in reality it is much more likely that a composite structure is exposed to a certain stress state when it is being impacted, which can have a significant effect on the impact performance. And the radiated impact sound induced by impact is analyzed for the damage detection evaluation. In this study, an investigation was undertaken to evaluate the effect in-plane loading on the impact force and sound of composite laminates numerically.

In-plane Free Vibration Analysis of Parabolic Arches with Hollow Section (중공단면을 갖는 포물선형 아치의 면내 자유진동 해석)

  • Lee, Tae-Eun;Lee, Byoung-Koo;Lee, Jae-Young;Yoon, Hee-Min
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.2
    • /
    • pp.215-223
    • /
    • 2008
  • The differential equations governing free vibrations of the elastic arches with hollow section are derived in polar coordinates, in which the effect of rotatory inertia is included. Natural frequencies is computed numerically for parabolic arches with both clamped ends and both hinged ends. Comparisons of natural frequencies between this study and reference are made to validate theories and numerical methods developed herein. The lowest four natural frequency parameters are reported, with the rotatory inertia, as functions of three non-dimensional system parameters: the breadth ratio, the thickness ratio and the rise to span length ratio.

Flapwise bending vibration analysis of rotating cantilever beams considering shear and rotary inertial effects (전단 및 단면 회전관성효과를 고려한 회전 외팔보의 면외 굽힘진동해석)

  • Shin, Sang-Ha;Yoo, Hong-Hui
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.10
    • /
    • pp.1580-1588
    • /
    • 1997
  • A modeling method for the flapwise bending vibration of a rotating cantilever beam which has small slenderness ratio is presented in this paper. It is shown that as the slenderness ratio decreases the shear and rotary inertia effects increase. Such effects become critical for the accurate estimation of the natural frequencies and modeshapes, especially higher frequencies and modes, as the angular speed increases. It is also shown that the flapwise bending natural frequencies are higher than the chordwise bending natural frequencies. The discrepancy between first natural frequencies are especially significant when the hub radius ratio is small.

Free Vibration Analysis of Curved Beams with Varying Cross-Section (단면적이 변하는 곡선보의 진동해석)

  • Kang, Ki-Jun;Kim, Young-Woo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.5
    • /
    • pp.453-462
    • /
    • 2009
  • The differential quadrature method(DQM) is applied to the free in-plane vibration analysis of circular curved beams with varying cross-section neglecting transverse shearing deformation. Natural frequencies are calculated for the beams with various opening angles and end conditions. Results obtained by the DQM are compared with available results by other methods in the literature. It is found that the DQM gives good accuracy even with a small number of grid points. In addition, the corrected results are given for the beams not previously presented for this problem.

Vibration Analysis of an Axially Moving Membrane with In-Plane/out-of-Plane Deformations (면내/면외변형을 고려한 이송되는 박막의 진동해석)

  • 신창호;정진태
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.164-168
    • /
    • 2004
  • The vibration analysis of an axially moving membrane are investigated when the membrane has the two sets of in-plane boundary conditions, which are free and fixed constraints in the lateral direction. Since the in-plane stiffness is much higher than the out-of-plane stiffness, it is assumed during deriving the equations of motion that the in-plane motion is in a steady state. Under this assumption. the equation of out-of\ulcornerplane motion is derived, which is a linear partial differential equation influenced by the in-plane stress distributions. After discretizing the equation by using the Galerkin method, the natural frequencies and mode shapes are computed. In particular, we put a focus on analyzing the effects of the in-plane boundary conditions on the natural frequencies and mode shapes of the moving membrane.

  • PDF

Vibration Analysis of an Axially Moving Membrane with In-plane/Out-of-plane Deformations (면내/면외변형을 고려한 이송되는 박막의 진동해석)

  • Shin Changho;Chung Jintai
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.9 s.90
    • /
    • pp.910-918
    • /
    • 2004
  • The vibration analysis of an axially moving membrane are investigated when the membrane has the two sets of in-plane boundary conditions, which are free and fixed constraints in the lateral direction. Since the in-plane stiffness is much higher than the out-of-plane stiffness, it is assumed during deriving the equations of motion that the in-plane motion is in a steady state. Under this assumption, the equation of out-of-plane motion is derived, which is a linear partial differential equation influenced by the in-plane stress distributions. After discretizing the equation by using the Galerkin method, the natural frequencies and mode shapes are computed. In particular, we put a focus on analyzing the effects of the in-plane boundary conditions on the natural frequencies and mode shapes of the moving membrane.

Analysis of the Crankshaft Behavior on In-plane and Out-plane Mode at the Firing Stage (엔진 운전시 크랭크샤프트의 면내.외 모드의 거동 해석)

  • Abu Aminudin;Lee, Hae-Jin;Lee, Jung-Youn;Oh, Jae-Eung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.4 s.109
    • /
    • pp.319-328
    • /
    • 2006
  • This paper presents a method for analysis of the mechanical behavior of a crankshaft in a four-cylinder internal combustion engine. The purpose of the analysis was to study the characteristics of the shaft in which the pin and arm parts were assumed to have a uniform section in order to simplify the modal analysis. The results of natural frequency transfer function and mode shape were compared with those obtained by experimental work. The results obtained from the comparison showed a good agreement with each other and consequently verified the analysis model. Furthermore, a prediction of crankshaft characteristics under the firing condition, by using the model, was performed. This study describes a new method for analyzing the dynamic behavior of crankshaft vibrations in the frequency domain based on the initial firing stages. The new method used RMS values to calculate the energy at each bearing journal and counter weight shape modification under the operating conditions.