• Title/Summary/Keyword: 메르캅탄

Search Result 26, Processing Time 0.03 seconds

Retention Time Prediction form Molecular Structure of Sulfur Compounds by Gas Chromatography (기체크로마토그래피에서 황화합물의 구조를 통한 용리시간 예측)

  • Kim, Young Gu;Kim, Won Ho;Pak, Hyung Suk
    • Journal of the Korean Chemical Society
    • /
    • v.42 no.6
    • /
    • pp.646-651
    • /
    • 1998
  • The molecular structure of sulfur compounds and the retention relationship are studied by gas chromatography. Analyzed sulfur compounds are, hydrogen sulfide, sulfur dioxide, carbon disulfide, ethyl mercaptan, dimethyl sulfide, iso-propyl mercaptan, normal propyl mercaptan, ethyl methyl sulfide, tert-butyl mercaptan, tetrahydrothiophene, thiophene, and 2-chlorothiophene. Multiple linear regression explains the retention relationship of molecular descriptors. In GC the temperature program is 30$^{\circ}C$ held for 10.5 min, and then increased to 150$^{\circ}C$ at a rate 15$^{\circ}C$/min. Predicted equation for relative retention time (RRT) using SAS program is as follows; $RRT=0.121bp+14.39dp-8.94dp^2+0.0741sqmw-35.78\; (N=8,\; R^2=0.989, \;Variance=0.175,\;F=66.21)$. RRTs are function of boiling point, the square root of molecular weight, molecular dipole moment, and boiling point effects mostly on RRT. The RRT is maximized at the molecular dipole moment of 0.805D, when using nonpolar columns. The planar and highly symmetric compounds are eluted slowly. The square, of correlation coefficient $(R^2)$ using SAS program, is 0.989, and the variance is 0.175 in training sets. For three sulfur compounds, the variance between observed RRTs and predicted RRTs is 0.432 in testing sets.

  • PDF

Study on Removal of Trace Components from Landfill Gas Hydrate (매립가스 하이드레이트에서 미량성분 제거에 관한 연구)

  • Shin, Hyungjoon;Moon, Donghyun;Han, Kyuwon;Lee, Jaejung;Yoon, Jiho;Lee, Gangwoo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.152.1-152.1
    • /
    • 2010
  • 매립지에서 유기물의 분해로 발생되는 매립가스는 악취 등으로 인한 대기오염뿐만 아니라 온난화지수가 21인 메탄이 약 50vol% 이상 포함되어 있어 지구온난화에 큰 영향을 미친다. 하지만 매립가스를 에너지원으로 활용하면 대기오염저감, 지구온난화 감소, 대체에너지원 확보뿐만 아니라 CDM사업 등과 연계하여 부가수익창출이 가능하다. 현재 국내에는 약 242개의 폐기물매립지가 있는데, 이중 매립가스를 활용하는 곳은 단지 14개소로 개별 경제성이 있는 대형매립지에서만 자원화시설을 설치하여 운영 중이며 그 외 매립지에서는 매립가스를 소각 또는 단순 대기 방출하여 대기오염유발과 동시에 대체에너지원 미활용으로 국가차원에서 큰 손실이므로 이를 활용할 수 있는 기술개발이 시급하다. 현재 매립가스 에너지화 기술로는 매립가스 열량에 따라 가스엔진, 가스터진, 증기터빈을 이용하는데 국내에서는 수분제거와 같은 간단한 처리 과정을 거친 후, 정제 없이 사용한다. 그런데 매립가스 구성 성분 중 일부 미량가스($H_2S$ 등)는 부식성이 높아 실제 공정에서 큰 문제점으로 작용하게 되므로 전처리공정이 반드시 필요하다. 본 연구에서는 중소규모 매립지에서 발생하는 매립가스를 중심적환장으로 이송하여 경제성을 가지는 에너지원으로 활용할 수 있는 기술개발을 목표로 하이드레이트 기술을 활용함에 있어 전처리 기초연구를 수행하였다. 매립가스 구성성분 중 대표적 악취물질인 메르캅탄과 부식성 물질인 황화수소의 전처리 기술로서 활성탄 흡착방법을 이용하여 외부에서 관찰이 가능하고 흡착탑을 2단으로 구성하여 활성탄 흡착탑을 제작하였다. 대상가스는 일반적으로 매립가스에 포함되어 있는 성분으로 제작하여 사용하였고 흡착탑 전 후 가스의 성분분석은 LMSxi를 이용하였다. 실험결과 활성탄의 상태, 접촉시간, 흡착탑의 구성에 따라 50~80%의 제거효율을 보였으며 이는 활성탄 흡착탑을 매립가스 에너지화의 전처리 시설로 사용될 경우 각각의 변수들에 대해 정확한 공정설계가 필요하다고 할 수 있다.

  • PDF

Adsorption Characteristics of Acetone, Benzene, and Metylmercaptan by Activated Carbon Prepared from Waste Citrus Peel (폐감귤박으로 제조한 활성탄에 의한 아세톤, 벤젠 및 메틸메르캅탄의 흡착특성)

  • Kam, Sang-Kyu;Kang, Kyung-Ho;Lee, Min-Gyu
    • Applied Chemistry for Engineering
    • /
    • v.28 no.6
    • /
    • pp.663-669
    • /
    • 2017
  • Activated carbons were prepared from waste citrus peels using KOH, NaOH, and $ZnCl_2$ as activating chemicals. They were prepared at optimal conditions including the chemical ratio of 300%, activation time of 1.5h, and activation temperature of $900^{\circ}C$ for KOH, $700^{\circ}C$ for NaOH, and $600^{\circ}C$ for $ZnCl_2$, which were named as ACK, ACN, and ACZ, respectively. Using the activated carbons, their adsorption characteristics for three target gases such as acetone, benzene, and methylmercaptan (MM) were carried out in a batch reactor. The adsorption behavior of activated carbons for three target gases followed the Freundlich model better than the Langmuir. And the experimental kinetic data followed a pseudo-second-order kinetic model more than pseudo-first-order one. Following the intraparticle diffusion model suggested that the external mass transfer and particle diffusion were occurred simultaneously during the adsorption process.

Removal Efficiency of the Deodorization Equipment and Characteristics of Malodor during the Process in Co-treatment of Sewage and Food Waste of Su-young Wastewater Treatment Plant in Busan (부산수영하수처리장 하수와 음식물쓰레기 병합처리 시 공정별 악취특성 및 후처리시설 효율평가)

  • Lee, Hyung-Don;Kang, Dae-Jong;Lee, Min-Ho;Kang, Dong-Hyo;Oh, Kwang-Joong
    • Clean Technology
    • /
    • v.18 no.4
    • /
    • pp.379-389
    • /
    • 2012
  • Environmental issues are being paid more attention due to income growth, urban overcrowding, and population growth in Korea. Among the various environmental problems, odor damage is the one of the serious factors. To take example for food waste combination treatment in Su-young wastewater treatment plant in Busan, many complaints occurred because this plant locate around residential areas. The purpose of this work is not only to analyze odorous elements and their contributions but also to evaluate odor quotient (OQ), sum of odor quotient (SOQ), and treatment efficiency of bio-filter. The results of dilution sensory test of complex odor, grinder, leachate, hopper indicated higher order complex odors happen in July and August. The main odorous elements consisted of hydrogen sulfide, ammonia, methly mercaptan and acetaldehyde, which were analyzed by instrumental detection method, and methyl mercaptan was exceeded over 3,571 times of threshold. In addition, result of contribution of odor was methyl mercaptan (49.95 to 59.08%), hydrogen sulfide (20.43 to 29.27%), trimethylamine (8.82 to 13.42%) and acetaldehyde (9.17 to 11.35%). Other facilities were compared with the contribution of the odor using OQ and SOQ during the process. Sulfur compounds, acetaldehyde, and trimethylamine are high contribution of odor using OQ as well as odor intensity of grinding process is highest. As a result, sulfur compounds (e.g., methyl mercaptan and hydrogen sulfide) are highest for OQ and SOQ of grinding process is highest as 7,067. The removal efficiency of deodorization equipment was more than 90.00% in ammonia and amines, but the average efficiency of sulfur compounds was 53.51%. Thus, this facility is more higher contribution of acetaldehyde and trimethylamine than other treatment facilities. And food waste treatment in environmental area needs to consider appropriate capacity and refers to other bio-filter operating conditions.

A Study on the Process Corrosion and Source of the Emitted $H_2S$ from Clay Tower of Petrochemical BTX Process (석유화학 BTX 공정 점토탑에서의 $H_2S$ 및 공정 부식 발생 원인규명에 관한 연구)

  • 서성규;정채훈;문정선
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 1999.10a
    • /
    • pp.443-444
    • /
    • 1999
  • 악취는 냄새를 유발하는 기체상 물질이 사람의 후각을 자극하여 불쾌감이나 혐오감을 주는 상태를 말한다. 악취물질은 정유공장, 화학공장, 하수처리장, 분뇨 및 축산 폐수처리장, 매립장 등의 다양한 발생원이 있으며, 여러가지 복합된 화합물이 원인이 되어 악취를 유발한다. 단위 물질로서 황화수소(H$_2$S)는 계란 썩는 냄새, 메르캅탄(mercaptan)류는 야채 썩는 냄새, 아민류는 생선냄새 등의 특이한 냄새를 유발하며, 최저 감지값은 물질별로 상당한 차이를 나타내고 있다(이광묵, 1993).(중략)

  • PDF

Analysis of Volatile Organic Compounds by GC/MS with the Thermal Desorber and Characterization of the Major Components Attributing to Malodor -An Analytical Example of the Odor Emitted from the Compost of Food Waste- (흡착 열탈착 장치와 GC/MS를 이용한 휘발성 유기화합물의 분석과 악취원인 성분의 예측 - 음식물 퇴비화 과정에서 발생되는 악취분석의 예 -)

  • Yu, Mee-Seon;Yang, Sung-Bong;Ahn, Jeong-Soo
    • Analytical Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.80-86
    • /
    • 2002
  • The simultaneous analysis of the odorous compounds designated by law in Korea and Japan was examined with the thermal desorber gas chromatography-mass spectrometry using one column. The approximate concentrations of trimethyl amine, acetaldehyde, methyl mercaptan and dimethyl sulfide were estimated. Styrene, dimethyl disulfide, propionaldehyde, n-butyl aldehyde, i-butyl aldehyde, n-valeraldehyde, i-valeraldehyde, ethyl acetate, toluene, xylene, methyl i-butyl ketone and i-butanol were detected at concentrations of the detection limits of their threshold values. As a typical example of simultaneous analysis of the odorous compounds, the volatile organic compounds emitted from compost procedure of food waste were concentrated and analyzed with thermal desorber/GC/MSD, and major malodorous compounds were estimated from the concentrations and threshold values of the detected components. From the result of analysis, 34 compounds were confirmed and among them, trimethyl amine, i-valeraldehyde, methyl mercaptan, methyl allyl sulfide, dimethyl sulfide, acetaldehyde, ethanol, n-butyaldehyde were expected to attribute to the odor in order of strength.

The Effect of Soil Characters on Removal of Odorous Gases during Carcasses Degradation with Efficient Microorganisms (토질 특성에 따른 가축사체 매몰지의 악취 저감 연구)

  • Kim, Hyun-Sook;Park, Sujung;Jung, Weon Hwa;Srinivasan, Sathiyaraj;Lee, Sang-Seob
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.4
    • /
    • pp.277-285
    • /
    • 2014
  • The usage of efficient microorganism (EM) is increasing in concern for server purposes including odor removal during carcasses degradation. In this study, we have studied the type of soil and its effect on efficient microorganisms for the removal of odorous gases during buried carcasses degradation in lab-scale reactor. The carcasses are buried in the reactor with various soil types such as normal soil, 20% sandy and 20% clay soil with the efficient microorganism KEM. The efficient microorganisms KEM have the ability to stabilize the degradation of carcasses of the burial site. We have focused on the analysis of odorous gases such tri-methylamine (TMA), hydrogen sulfide ($H_2S$), methyl mercaptan (MM), dimethyl sulfide (DMS), dimethyl disulfide (DMDS), carbon dioxide ($CO_2$), and methane ($CH_4$) along with the changes of microbial community changed during complete degradation of buried carcasses for a year. The results suggested that the 20% sandy soil contain lesser level of $H_2S$ and MM (0.09 and 0.35 mg) but 20% clay has higher nitrogen compound removing effect and leave only less amount of ammonia and TMA (0.31 and 2.06 mg). The 20% sandy soil also has the ability to breakdown the carcasses more quality compared with other types of soil. Based on the data obtained in this study suggesting that, the use of 20% sandy soil can effectively control sulfur compounds whereas 20% clay soil controls nitrogen compounds in the buried soil. Depending on the type of the soil, the dominant of microbial communities and the distribution was change.

Adsorption Characteristics of Acetone, Benzene, and Metylmercaptan in the Fixed Bed Reactor Packed with Activated Carbon Prepared from Waste Citrus Peel (폐감귤박으로 제조한 활성탄을 충전한 고정층 반응기에서 아세톤, 벤젠 및 메틸메르캅탄의 흡착특성)

  • Kam, Sang-Kyu;Kang, Kyung-Ho;Lee, Min-Gyu
    • Applied Chemistry for Engineering
    • /
    • v.29 no.1
    • /
    • pp.28-36
    • /
    • 2018
  • Adsorption experiments of three target gases such as acetone, benzene, and methyl mercaptan (MM) were carried in a continuous reactor using the activated carbon prepared from waste citrus peel. In a single gas system, the breakthrough time obtained from using the activated carbon (WCAC) prepared from waste citrus peel. In a single gas system, the breakthrough time obtained from the breakthrough curve decreased with increasing the inlet concentration and flow rate, but increased with respect to the aspect ratio (L/D). Adsorbed amounts of the target gases by WCAC increased as a function of the inlet concentration and aspect ratio. However, adsorbed amounts with the increase of the flow rate were different depending upon target gases. Results from the breakthrough time and adsorbed amount showed that the affinity for WCAC was the highest in benzene, followed by acetone and then MM. On the other hand, in the binary and ternary systems, the breakthrough curve showed a roll-up phenomenon where the adsorbate having a small affinity for WCAC was replaced with the adsorbate with a high affinity. The adsorption of acetone on WCAC was more strongly affected when mixing with the nonpolar benzene than that of using sulfur compound MM.

Adsorption Characteristics of Acetone, Benzene and Methyl Mercaptan according to the Surface Chemistry and Pore Structure of Activated Carbons Prepared from Waste Citrus Peel in the Fixed Bed Adsorption Reactor (고정층 흡착 반응기에서 폐감귤박 활성탄의 표면 화학적 특성과 세공구조에 따른 아세톤, 벤젠 및 메틸메르캅탄의 흡착특성)

  • Kam, Sang-Kyu;Kang, Kyung-Ho;Lee, Min-Gyu
    • Applied Chemistry for Engineering
    • /
    • v.29 no.2
    • /
    • pp.237-243
    • /
    • 2018
  • The surface chemistry of WCK-AC, WCN-AC and WCZ-AC which are activated carbons prepared from waste citrus peel using KOH, NaOH, and $ZnCl_2$ as activating chemicals were investigated. Also the relationships between the adsorption capacities of the target gases such as acetone, benzene and methyl mercaptan (MM) by the prepared activated carbons and the pore characteristics of each activated carbon were examined. According to XPS analysis of the prepared activated carbons, graphite and phenolic were the main surface functional groups of C1, and the sum of phenol, carbonyl and carboxyl groups increased in the order of WCK-AC > WCN-AC > WCZ-AC. The breakthrough curves obtained from the adsorption experiments for the three target gases in the fixed bed adsorption reactor were well simulated by the empirical equations proposed by Yoon and Nelson. The adsorption capacity for acetone, benzene and MM was larger for activated carbons with the larger sum of surface functional groups. The larger the specific surface area and the pore volume of activated carbons and the smaller the pore size, the better the adsorption performance. In particular, the specific surface area was the best criterion for the adsorption performance of activated carbons used in this study.

Removal of Odor- containing Sulfur Compound, Methyl Mercaptan using Modified Activated Carbon with Various Acidic Chemicals (산으로 개질된 활성탄을 이용한 메틸 메르캅탄 악취물질 제거)

  • Kim Dae Jung;Seo Seong Gyu;Kim Sang Chai
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.21 no.2
    • /
    • pp.155-160
    • /
    • 2005
  • Removal of methyl mercaptan was investigated using adsorption on virgin activated carbon (VAC) and modified activated carbons with acidic chemicals in the present work. CAC, NAC, AAC and SAC were represented as activated carbons modified with HCI, HNO$_{3}$, CH$_{3}$COOH and H$_{2}$S0$_{4}$ ,respectively The pore structures were evaluated using nitrogen isotherm. The surface properties of virgin activated carbon and modified activated carbons were characterized by EA, pH of carbon surface and acid value from Boehm titration. The modification of activated carbon with acidic chemicals resulted in a decrease in BET surface area, micropore volume and surface pH, but an increase in acid value. The order of the adsorption capacity of activated carbons was NAC>AAC>SAC>CAC>VAC, and in agreement with that of acid value of activated carbons, whereas in disagreement with that of micropore volume of activated carbons. It appeared that chemical adsorption played an important role in methyl mercaptan on modified activated carbons with acidic chemicals compared to virgin activated carbon. Modifying activated carbon with acidic chemicals enabled to significantly enhance removal of methyl mercaptan.