흡착 열탈착 장치와 GC/MS를 이용한 휘발성 유기화합물의 분석과 악취원인 성분의 예측

- 음식물 퇴비화 과정에서 발생되는 악취분석의 예 -

유미선*·양성봉·안정수 울산대학교 자연과학대학 화학생명과학부

울산대학교 자연과학대학 화학생명과학부 (2001, 11, 9 접수)

Analysis of V olatile O rganic C ompounds by G C/MS with the T hermal D esorber and C haracterization of the M ajor C omponents A ttributing to M alodor

-An Analytical E xample of the O dor E mitted from the Compost of F ood W aste-

Mee-Seon Y u*, S ung-Bong Y ang a nd Jeong-Soo A hn

School of Biological & Chemistry, University of Ulsan, Ulsan, 680-749, Korea (Received Nov. 9, 2001)

요 약: 흡착/열탈착/GC/MS를 이용하여 우리나라와 일본의 법정 악취성분을 한 컬럼으로 동시분석이 가능한가를 검토하였다. 트리메틸아민, 아세트알데히드, 메틸메르캅탄, 이메틸황 은 대략적인 농도를 추정할 수 있었으며, 스티렌, 이황화메틸, 이황화에틸 그리고 프로피온알데히드, n-부틸알데히드, i-부틸알데히드, n-발레르알데히드, i-발레르알데히드, 아세트산에틸, 톨루엔, 자일렌, 메틸이소부틸케톤, 이소부탄올에 대해서는 최소감지농도까지 검출할 수 있음을 확인할 수 있었다. 악취성분의 동시 분석 예로서 음식물 쓰레기의 퇴비화 과정에서 발생되는 휘발성 성분을 농축시켜 흡착/열탈착/GC/MSD에 의해 분석하고, 각 성분의 농도와 최소 냄새감지 농도로부터 악취원인 성분을 예측하였다. 분석결과 34가지 물질에 대해 확인하였고, 이 중 트리메틸아민, 이소발레르알데히드, 메틸메르캅탄, 메틸알릴황, 이메틸황, 아세트알데히드, 에탄올, n-부틸알데히드의 순으로 악취에 기여할 것으로 예상되었다.

Abstract: The simultaneous analysis of the odorous compounds designated by law in Korea and Japan was examined with the thermal desorber gas chromatography-mass spectrometry using one column. The approximate concentrations of trimethyl amine, acetaldehyde, methyl mercaptan and dimethyl sulfide were estimated. Styrene, dimethyl disulfide, propionaldehyde, n-butyl aldehyde, i-butyl aldehyde, n-valeraldehyde, i-valeraldehyde, ethyl acetate, toluene, xylene, methyl i-butyl ketone and i-butanol were detected at concentrations of the detection limits of their threshold values. As a typical example of simultaneous analysis of the odorous compounds, the volatile organic compounds emitted from compost procedure of food waste were concentrated and analyzed with thermal desorber/GC/MSD, and major malodorous compounds were estimated from the concentrations and threshold values of the detected components.

Phone: +82+(0)52-259-2340, Fax: +82-(0)52-259-2347

E-Mail: msyuuou@yahoo.co.kr

[★] Corresponding author

From the result of analysis, 34 compounds were confirmed and among them, trimethyl amine, *i*-valeraldehyde, methyl mercaptan, methyl allyl sulfide, dimethyl sulfide, acetaldehyde, ethanol, *n*-butyaldehyde were expected to attribute to the odor in order of strength.

Key words: odor analysis, VOCs, compost of food waste, odorous compunds designated by law

1. 서 론

최근 전국 각지에서 악취에 대한 민원이 늘면서 악취의 원인 성분에 대한 측정기술에 관심이 고조되고 있다. 현재, 우리나라의 악취 배출허용 기준 1에는 8가지가, 또한 이웃 일본의 경우 22가지 성분 1에 대해 사업장 부지경계선에서 그 농도를 규제하고 있다. 이러한 법정 규제대상 악취 성분은 암모니아를 제외하고 모두 가스 크로마토그래프(GC)에 의한 측정법이 공정시험법 34으로 명시되고 있다.

한편 최근에는 휘발성 유기화합물(VOC)에 대한 규제⁵도 실시되었으며, 그 중 대량으로 사용됨으로써 쉽게 대기 중에 배출되거나 또는 건강에 해를 끼칠 수 있는 VOC에 대해서는 공기 중에서의 성분별 측정법⁶ 확립되어 가고 있다. 일반적인 공기 중 VOC의 농축 및 분석기법으로서 용기포집 또는 봉지포집-저온농축-GC/MS법 또는 고체흡착포집-가열탈착-GC/MS법 등이 알려져 있으며, 최근 우리나라에서도 이러한 분석기법이 이용되기 시작하였고 측정사례^{7.9}도 늘고 있는 추세이다.

흡착농축/GC/MS법에 의한 공기 중 VOC 성분의 측정에 의한 농도와 물질별 최소냄새감지농도를 결부시켜 악취의 원인 성분을 예측하는 기법은 일본 등에서는 흔히 이용되는 악취의 측정기법¹⁰⁻¹⁴이다. 그런데 생활 주변에서 악취의 원인성분이 다양하게 검출되는 악취의 예는 많지 않으며 특히 악취물질로서 많은 규제대상성분이 동시에 검출되는 예는 극히 드물다.

본 연구에서는 음식물 퇴비화 과정에서 발생되는 악취를 GC/MS로 분석하여 악취성분을 분석하였으며, GC/MS에 의한 악취성분의 규명의 좋은 사례가 될 수 있어서 여기서 소개하고자 한다.

2. 실험 내용과 방법

2.1 표준가스의 제조

2.1.1 순수한 질소의 제조

대기 속에 포함되어 있는 악취성분의 정확한

농도를 알기 위해서는 성분별 검량선의 작성은 매우 중요하다. 대기 중에 있는 악취성분은 미량으로 존재하기 때문에 표준물질을 이용한 표준가스 제조 시에는 불순물이 거의 들어 있지 않는 순수한 질소를 사용해야만 오차를 줄일 수 있다. 순수한 질소를 얻는 장치를 Fig. 1.에 나타내었다.

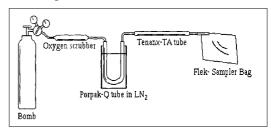


Fig. 1. Preparation of pure nitrogen gas.

가스통으로부터 질소를 흘려주게 되면 Porapak-Q로 충진된 흡착관이 액화질소에 의해 냉각되면서 pentane 이하의 저비점 휘발성 유기화합물(이하 VOC's)이 제 거되고, Tenax-TA로 충진된 흡착관은 중비점 이상의 VOC's를 제거하는 방법으로 순수한 질소가스를 제조하였다.

제조된 순수 질소가스는 다시 농축(3.0 l) 및 GC 분석에 의해 질소 중에 휘발성 유기화합물이 없음을 확인하였다.

2.2.2 표준가스의 제조

순수한 질소가 들어 있는 $1.0 \, \ell$ 표준 시료병(봉규소산 유리병에 불소수지로 코크를 갖춘 것)에 톨루엔 $1.0 \mu \ell (0.865 \, \mathrm{mg})$ 를 micro syringe(용량 $10 \mu \ell)$ 로 취하여표준 시료병에 넣어(Fig. 2) 가열히터(heating tape)로 $150 \, \mathrm{C}$ 정도로 1시간정도 가열하고 완전히 기화시켰다.이 표준 가스병에서 gas-tight-syringe를 이용하여 톨루엔이 포함된 가스 $10.0 \, \mathrm{cc}($ 톨루엔 양 $8.65 \, \mu \mathrm{g})$ 를 취하여 VOC가 제거된 질소 $1.0 \, \ell$ 가 들어 있는 polyester bag $1.0 \, \ell$ 이 주입하였다.이 toluene 가스가 들어있는 봉지에서다시 gas-tight-syringe를 이용하여 $100 \, \mathrm{cc}$ 취하여 $100 \, \mathrm{cc}$ 취하여 $100 \, \mathrm{cc}$ 기화 $100 \, \mathrm$

의 질소가 들어 있는 polyester bag에 넣어 10 배로 희석시켰다. 이 봉지에 들어있는 톨루엔의 총량은 0.856 μ g이다. 이와 유사한 방법에의해 악취원인이 되는 몇 가지 악취 물질에대해 검량선을 만들기 위한 여러 농도의 표준가스를 제작하였다.

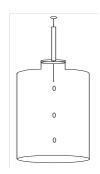


Fig. 2. Preparation of standard gas.

2.2.3 표준가스의 농도 계산

표준병에 제작된 표준가스의 농도는 다음에 의해 계산하였다.

$$C(mg/L) = \frac{24.43 \times 1000 \times d \times v}{g \times V}$$

※ 1 atm, 25℃에서 이상기체 24.43L

C(mg/L) : 표준가스의 농도 d : 액체표준물질의 밀도

v(uL) : 표준병에 주입된 액체 표준물질의 주입량

g : 액체표준물질의 분자량 V(L) : 표준병의 정확한 부피

2.2.4 가스 검지관에 의한 표준가스의 농도측정

제조된 표준가스에 대해서는 시중에서 판매되고 있는 검지관(Gastek사 또는 Kitagawa제품)을 이용하여 검지관에서 측정할 수 있는 범위의 농도에 해당하는 표준가스의 농도를 측정하고 계산된 값과 비교 확인하였다.

2.2 상온흡착/열탈착-GC/MSD를 이용한 표준 가스와 악취시료의 측정

2.2.1 표준가스의 분석

이 봉지의 입구를 미리 VOC를 가열에 의해 제거시

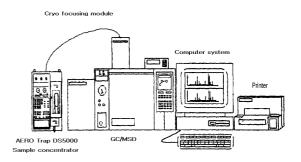


Fig. 3. Scheme of GC/MSD-DS 5000 system.

킨 Tenax-TA 흡착관에 연결하여 0.5L/min의 유량으로 적당량(0.1~3.0L) 흡착(펌프: Sibata, 유량계: Sinagawa (1L/rev)시켰다. 악취성분이 흡착된 흡착관을 가열탈착장치(AeroTrap DS-5000)에 연결하여 (Fig. 3.)다음 Table. 1의 탈착장치 및 GC/MSD의 조건에 의해 분석하였다¹⁶.

Table 1. Experimental condition of the concentrator and GC/MSD for VOC analysis

Ana	lytical condition					
☐ DS-500(OI Co. Ltd)						
Carrier gas	He (0.8 mL/min)					
Purge gas	He (40 mL/min)					
Standby temp.	30℃					
Sample sweep time	0.1min					
Sample preheat time	0.1min					
Sample desorb temp.	180℃					
Sample desorb time	8min, 10min					
Water system line	200℃					
MCS desorb temp.	200℃					
Interal trap preheat	0.2min/180℃					
Cryofocus cool down temp.	-120℃					
Cryofocus injection time/temp	1min/200 ℃					
☐ GC/MSD(HP5890 series II/HP5971A MSD)						
Column	PONA, 50m×0.2mm×0.33μm					
Oven	28 °C (15min) → 3.0 °C/min → 150 °C (0min) → 10 °C/min → 200 °C (5min)					
Carrier	Helium, 0.8 mL/min					
Det	MSD, 280℃					
Inj	Cryofocus injection, $200^{\circ}\mathrm{C}$, 1min					
EM volts	2388					
Mass range	15~400 or 35~400					

2.2.2 악취시료의 채취와 분석

가정에서 수거된 음식물 쓰레기의 퇴비화 장치에서 퇴비화가 진행되는 반죽상태에서 악취시료를 채취하였 다. 시료의 채취는 유로를 이루는 재질에서 악취 발생 이 없는 휴대용 펌프(Omi사 제품)와 폴리에스테르 재 질의 시료채취봉지(Flex sampler)를 사용하였으며(Fig. 4), 시료채취시간은 1∼3분, 채취량은 20ℓ로 직접 채 취법에 의해 포집하였다. 시료를 흡착하기 위한 흡착 관은 표준가스 제조에서와 같은 Tenax-TA관을 사용하 였으며, 흡착량은 3.0ℓ, 흡착유량은 0.84ℓ/min으로 상 온 흡착하였다. 시료 분석에 사용된 농축기와 분석기 기와 작동조건은 표준가스의 분석과 동일하게 하였다.

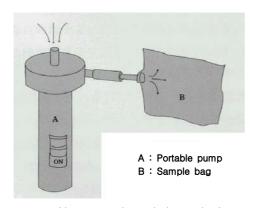


Fig. 4. Portable pump and sample bag(Mylar bag).

3. 결과 및 고찰

3.1 표준가스의 분석 결과

제조된 표준혼합가스의 조성과 크로마토그램의 예를 *Table*. 2와 *Fig*. 5에 나타내었다. 또한 검량선의 예(톨루엔)을 *Fig*. 6에 나타내었다.

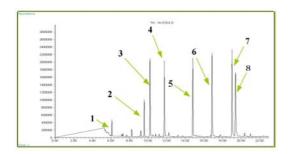


Fig. 5. GC/MS chromatogram of standard gas mixture.

Table 1. Example of standard gas mixture

number	compound	concentration(µg/L)
1	Dichloromethane	66.0
2	1,1,1-trichloroethane	63.0
3	Benzene	45.3
4	Trichloroethene	73.0
5	Toluene	43.0
6	Tetrachloroethane	77.0
7	Ethylbenzene	43.0
8	p-Xylene	39.2

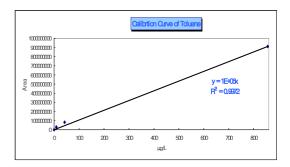


Fig. 6. Calibration curve of toluene(GC-MSD).

3.2 음식물 쓰레기 퇴비화 과정에서 발생되는 악 취시료의 분석

음식물 쓰레기에서 발생되는 휘발성 유기물질을 GC/MS를 이용하여 분석하였으며, 분석한 total ion chromatogram은 *Fig.* 7에 나타내었다.

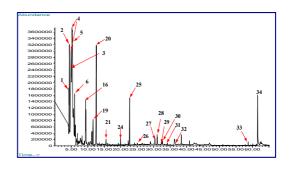


Fig. 7. Total ion chromatogram of the VOC's emitted from the compost of food waste.

최소감지농도가 낮은 악취물질은 저비점 영역에서 많이 나타나며 Fig. 7 중 저비점 영역인 4분에서 25분의 부분을 확대하여 Fig. 8에 나타내었다. 아울러 각성분에 대해서는 GC/MS의 데이터 처리장치에 실려 있는 질량스펙트럼(wiley library)으로부터 추정된 구조

Table 3. Volatile organic compounds emitted from the compost of food waste and their concentrations(A: Regulated as odorous components in Korea, B: in Japan)

Peak No	Compound	A	В	Retention time(min)	Concentration $(\mu g/L)$	Threshold value(µg/L)	Expected odor concentation	Attr. (%)
1	Acetaldehyde	0	0	4.28	~4349*	1.5	2899	2.8
2	Trimethyl amine	0	0	4.43	~1847*	0.032	57719	56.1
3	Methyl mercaptan	0	0	4.58	~345*	0.07	4929	4.8
4	Ethanol			5.20	~83800*	94	891	0.9
5	2-Methyl butane			5.30	~12549*	1300	10	0
6	Dimethyl sulfide(DMS)	0	0	6.02	11628	3	3876	3.8
7	Methyl acetate			6.25	2123	1700	1	0
8	iso-Butylaldehyde		0	6.90	385	0.41	937	0.9
9	Acrylonitrile			7.08	600	8800	0	0
10	Acetic acid			7.27	1515	5.7	266	0.3
11	n-Propanol			7.51	1968	260	8	0
12	n-Butyraldehyde		0	8.05	430	6.7	64	0.1
13	M.E.K(2-butanone)			8.27	867	440	2	0
14	2-Methyl furan			8.90	669			
15	i-Butanol		0	9.19	392	4500	0	0
16	Chloroform			9.35	4057	3800	1	0
17	Ethyl acetate		0	9.46	3140	870	4	0
18	Crotonaldehyde			10.81	1300	33000	0	0
19	iso-Valeraldehyde		0	11.60	7353	0.28	26261	25.5
20	Benzene			12.60	8177	2700	3	0
21	Methyl allyl sulfide			15.55	590	0.14	4214	4.1
22	Trichloroethylene			16.04	193	3900	0	0
23	Methyl cyclohexane			19.25	83	150	1	0
24	Dimethyl disulfide	0	0	19.96	548	3	183	0.2
25	Toluene		0	22.73	2521	330	8	0
26	n-Hexanal			25.03	98	0.18	544	0.5
27	Ethyl benzene			30.40	242	170	1	0
28	m,p-Xylene		0	31.20	678	41	17	0
29	Styrene	0	0	32.37	226	35	6	0
30	o-Xylene		0	32.67	144	380	0	0
31	<i>n</i> -Nonane			34.13	50	2200	0	0
32	Benzaldehyde			36.31	687			
33	Biphenyl			58.64				
34	2-Naphthalenecarbonitrile			61.59				

Asterisk: Not exact value

와 표준물질의 머무름 시간으로부터 각 피이크의 물질 명을 규명하였으며, 각 성분의 농도는 표준물질의 검 량선으로부터 산정하였다. 특히 끓는점이 낮아 신뢰성 있는 검량선을 얻지 못한 물질에 대해서는 끓는점과 분자구조상 유사할 것으로 예상되는 물질의 검량선으 로 해당성분의 농도를 추정하였다. 얻어진 각 성분의 농도를 Table 3에 나타내었으며 각 성분의 최소감지농 도로부터 해당성분의 예상악취농도를 산정하였다.

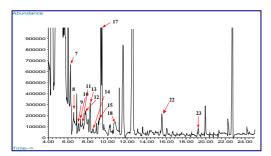


Fig. 8. Enlarged chromatogram between 4 and 24 minutes of total ion chromatogram of the VOC's emitted from the compost of food waste.

분석결과 검출된 휘발성 화합물은 총 34가지이며 최소감지농도¹⁸⁻¹⁹가 낮은 물질이 다양하게 검출되었다. 이중에서 우리나라의 악취규제 대상성분인 암모니아와 황화수소, 아세트알데히드, 트리메틸아민, 메틸메르캅 탄, 이메틸황, 이메틸이황, 스티렌 중 황화수소와 암모 니아를 제외한 모든 성분이 GC/MSD로 검출될 수 있 음을 확인할 수 있었다.

암모니아나 황화수소는 분자량이 매우 낮고 휘발성이 강해 Tenax-TA로는 흡착이 거의 안됨을 상기할 때퇴비화 과정에서 발생되더라도 이 시스템에 의해서는 검출할 수 없음을 의미한다. 또한 아세트알데히드와트리메틸아민의 경우 휘발성이 매우 커서 Tenax-TA에 흡착률이 낮아 정확한 정량이 불가능하였다. 메틸메르 캅탄, 이메틸황 및 이메틸이황과 같은 황화합물과 알데히드류는 농도가 매우 낮아도 최소감지농도가 매우낮기 때문에 악취농도를 예상하기 위해 정량의 필요성이 있음을 알 수 있었다. 음식물 퇴비화 과정에서 발생될 것으로 예상되는 아세트산의 경우 일반적인 VOC분석용 컬럼(PONA)으로는 심한 꼬리 끌림 현상으로 정확한 농도를 예상하기 어려웠으나 양이 많을 경우 존재의 유무를 판정할 수 있었다. 일본의 악취방지법에 규제대상으로 알려져 있는 알데히드류(프로피

온알데히드, n- 및 i-부틸알데히드, n- 및 i-발레르알데히드), 아세트산에틸, MIBK(메틸이소부틸케톤), 톨루엔, m,p,o-자일렌, 이소부탄올 등도 양호하게 검출될수 있었다. 그러나 저급지방산류(프로피온산, n-부티르산, n-발레르산, i-발레르산)의 경우 강한 꼬리 끌림 현상으로 검출되지 않았다.

이상과 같이 음식물 퇴비화 과정에서 발생되는 주요 악취성분을 예측할 때 악취에 가장 크게 기여할 것으로 예상되는 성분은 트리메틸아민(기여도 56.1%)으로 추정되었으며 다음으로 i-발레르알데히드(25.5%),메틸메르캅탄(4.8%),이메틸 황(3.8%) 등이 기여할 것으로 예상되었다. 퇴비화과정에서의 악취원인 성분에 대한 규명에 관한 연구는 거의 없는 듯하나 니시다(西田) 등¹⁷에 의한 쓰레기 소각장 저류조내 악취성분의 분석결과에서 트리메틸아민이 주성분으로 보고하고 있으며,음식물쓰레기의 부패취와 퇴비화 과정에서의 악취의 질이 유사함을 상기할 때 퇴비화 과정에서의 악취원인 성분도 음식물 쓰레기 부패 악취의 원인성분과 유사한 것으로 추정할 수 있었다.

4. 결 론

일반적으로 VOC측정용으로 사용되는 흡착·열탈착 농축기와 GC/MSD를 이용하여 우리나라와 일본에서 규제대상이 되고 있는 악취물질에 대한 정성 및 정량 분석에 대해 검토하였다. 아민류, 알데히드류, 황화합 물류 및 지방산 등은 각 성분의 농도가 낮아도 최소 감지농도가 매우 낮기 때문에 악취 원인성분을 규명하 기 위해서는 이들 물질에 대해서는 낮은 농도도 정확 히 정량해야 할 필요가 있었다. 그러나 암모니아 및 황화수소의 경우 분자량이 낮고 흡착관에 대한 흡착이 거의 없으며 또한 이를 다른 악취성분과 동시 분석할 수 있는 컬럼이 없기 때문에 VOC concentrator/GC/MS 으로는 불가능하였다. 또한 트리메틸아민, 아세트알데 히드, 메틸메르캅탄은 Tenax-TA에 대한 흡착률이 나 빠 정확한 정량에 어려움이 있었으며 이들 성분에 간 섭하는 물질의 양이 매우 적고 검출량이 많을 경우에 만 대략적인 농도를 추정할 수 있었다. 이메틸황 및 이메틸이황과 같은 황화합물과 다른 알데히드류는 농 도가 매우 낮아도 이들 성분은 비교적 낮은 농도까지 정량할 수 있어서 VOC concentrator/GC/MS가 악취분 석 수단으로 유용함을 알 수 있었다. 스티렌, 톨루엔,

자일렌, 아세트산 에틸, 부탄올과 같은 비교적 끓는점 이 높은 성분에 대해서는 상당히 정확하게 정량할 수 있었으며 최소감지농도도 황화합물, 아민류 및 알데히 드류보다 높아서 이들 성분에 대해서는 악취원인 성분의 규명에 매우 유용할 것으로 판단되었다. 저급지방산류는 tailing 현상이 심해 높은 농도의 아세트산의경우를 제외하고는 악취를 판정하기 위한 분석기법으로는 적절하지 않았다.

VOC concentrator/GC/MS를 이용하여 음식물 퇴비 화 과정에서 발생되는 심한 악취에 대해 분석해본 결 과 우리나라의 악취규제 대상물질인 아세트알데히드, 트리메틸아민, 메틸메르캅탄, 이메틸황, 이메틸이황, 스 티렌이 또한 이와 더불어 일본의 악취방지법에 규제대 상으로 알려져 있는 알데히드류, 아세트산에틸, MIBK (메틸이소부틸케톤), 톨루엔, m,p,o-자일렌, 이소부탄올 등도 검출되었다. 각 성분의 농도와 최소냄새감지값 18-19으로부터 악취 농도를 예상하였고 또한 이들 결과 로부터 퇴비화 과정에서 발생되는 악취의 기여도를 추 정해보았다. 트리메틸아민이 가장 큰 기여를 하였으며 i-발레르알데히드도 상당히 많은 기여를 할 것으로 예 상되었다. 현재 악취의 원인 성분을 측정하기 위한 여 러 방법이 있지만 한번의 분석으로 가장 많은 악취성 분을 알 수 있는 방법은 VOC concentrator/GC/MS으로 생각되며 악취원인분석으로 이에 대한 활용이 기대되 었다.

감사의 글

이 연구는 울산대학교 교내연구비에 의해 수행되었으며 이에 감사드립니다.

참고 문헌

- 1. "대기보전법 시행규칙 제12조 별표 8의 3 악취배출 허용기준", 1999.10.22 환경부령 제86 호, 환경부.
- 2. 양성봉, 김석만, 한국대기환경학회지, **16**(1), 79-87, (2000).

- 3. "대기오염공정시험방법, 악취편", 575-604, 1998, 환 경부
- 4. 악취법령연구회, "Handbook 악취방지법, 특정악취 물질의 측정방법", 236-287, (주)교세이, 일본 환경 청 대기보전국 대기생활환경실 감수.
- 5. "대기보전법 시행규칙 제64조 별표 18 휘발성유기 화합물 배출억제·방지시설설치에 관한 기준 등", 1999.10.22 환경부령 제86호, 환경부.
- 6. EPA Method TO-1, EPA Method TO-2.
- 전선주, 허귀석, 한국대기환경학회지, 15(4), 417-428, (1999).
- 8. 나광삼, 김용표, 문길주, 한국대기환경학회지, **15**(5) 567-574, (1999).
- 9. 이영재 외, 한국대기환경학회지, **17**(2), 169~177, (2001).
- M. Tokuhara et al, J. Odor Research and Eng., " 29(5), 347-355, (1998).
- 11. F. Nametani et al, J. Odor Research and Eng., **29**(5), 356-362, (1998).
- 12. N. Saito et al, J. Odor Research and Eng., **28**(5), 308-313, (1997).
- 13. 공해대책기술동우회, "악취방지기술 Manual", 일본 환경청 대기보전국 특수공해과, 일본, 1977.
- 14. 신환경관리 설비사전편집위원회, "대기오염방지기 기", 204~209, (주)산업조사회, 사전 출판센터, 일 본, 1995.
- 15. Data Sheet of Flek Sampler Specifications and pPysical Features -, OMI Ltd., 일본, 1995.
- 16. 김석만, "울산지역 대기 중 휘발성 유기화합물의 관측", 울산대학교 대학원 석사 학위논문, (1998).
- 17. 공해대책기술동우회, "악취방지기술 Manual(Ⅱ)",99-100, 일본 환경청 대기보전국 특수 공해과, 일본. 1977.
- 18. 永田, 竹內, 일본환경위생센터 연구소 보, 17, 77-89, 일본, 1990.
- 19. 川崎通昭·掘內 哲嗣郎 공저, "후각과 냄새물질", 9, 일본, 2000.