Browse > Article
http://dx.doi.org/10.14478/ace.2017.1131

Adsorption Characteristics of Acetone, Benzene and Methyl Mercaptan according to the Surface Chemistry and Pore Structure of Activated Carbons Prepared from Waste Citrus Peel in the Fixed Bed Adsorption Reactor  

Kam, Sang-Kyu (Department of Environmental Engineering, Jeju National University)
Kang, Kyung-Ho (Livestock Division, Jeju Special Self-Governing Province)
Lee, Min-Gyu (Department of Chemical Engineering, Pukyong National University)
Publication Information
Applied Chemistry for Engineering / v.29, no.2, 2018 , pp. 237-243 More about this Journal
Abstract
The surface chemistry of WCK-AC, WCN-AC and WCZ-AC which are activated carbons prepared from waste citrus peel using KOH, NaOH, and $ZnCl_2$ as activating chemicals were investigated. Also the relationships between the adsorption capacities of the target gases such as acetone, benzene and methyl mercaptan (MM) by the prepared activated carbons and the pore characteristics of each activated carbon were examined. According to XPS analysis of the prepared activated carbons, graphite and phenolic were the main surface functional groups of C1, and the sum of phenol, carbonyl and carboxyl groups increased in the order of WCK-AC > WCN-AC > WCZ-AC. The breakthrough curves obtained from the adsorption experiments for the three target gases in the fixed bed adsorption reactor were well simulated by the empirical equations proposed by Yoon and Nelson. The adsorption capacity for acetone, benzene and MM was larger for activated carbons with the larger sum of surface functional groups. The larger the specific surface area and the pore volume of activated carbons and the smaller the pore size, the better the adsorption performance. In particular, the specific surface area was the best criterion for the adsorption performance of activated carbons used in this study.
Keywords
activated carbon; waste citrus peel; adsorption; fixed bed reactor; surface chemistry; pore structure; acetone; benzene; methyl mercaptan;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 M. Kazemipour, M. Ansari, S. Tajrobehkar, M. Majdzadeh, and H. R. Kermani, Removal of lead, cadmium, zinc, and copper from industrial wastewater by carbon developed from walnut, hazelnut, almond, pistachio shell, and apricot stone, J. Hazard. Mater., 150, 322-327 (2008).   DOI
2 M. M. Mohamed, Acid dye removal: Comparison of surfactant modified mesoporous FSM-16 with activated carbon derived from rice husk, J. Colloid Int. Sci., 272, 28-34 (2004).   DOI
3 M. A. Ahmad, W. M. A. Wan Daud, and M. K. Aroua, Adsorption kinetics of various gases in carbon molecular sieves (CMS) produced from palm shell, Colloids Surf. A, 312, 131-135 (2008).   DOI
4 M. Valix, W. H. Cheung, and G. McKay, Preparation of activated carbon using low temperature carbonisation and physical activation of high ash raw bagasse for acid dye adsorption, Chemosphere, 56, 493-501 (2004).   DOI
5 R. L. Tseng, S. K. Tseng, and F. C. Wu, Preparation of high surface area carbons from corncob using KOH combined with $CO_2$ gasification for the adsorption of dyes and phenols from water, Colloids Surf. A, 279, 69-78 (2006).   DOI
6 M. K. Hafshejani, A. Langari, and M. Khazaei, Adsorption of acetone from polluted air by activated carbon derived from low cost materials, Life Sci. J., 10, 3658-3661 (2013).
7 J.-H. Tsai, H.-M. Chiang, G.-Y. Huang, and H.-L. Chiang, Adsorption characteristics of acetone, chloroform and acetonitrile on sludge-derived adsorbent, commercial granular activated carbon and activated carbon fibers, J. Hazard. Mater., 154, 1183-1191 (2008).   DOI
8 R. R. Bansode, J. N. Losso, W. E. Marshall, R. M. Rao, and R. J. Portier, Adsorption of volatile organic compounds by pecan shell and almond shell-based granular activated carbons, Bioresour. Technol., 90, 175-184 (2003).   DOI
9 S. K. Kam, K. H. Kang, and M. G. Lee, Adsorption characteristics of acetone, benzene, and metyl mercaptan by activated carbon prepared from waste citrus peel, Appl. Chem. Eng., 28(6), 663-669 (2017).   DOI
10 S. K. Kam, K. H. Kang, and M. G. Lee, Adsorption characteristics of acetone, benzene, and metyl mercaptan in the fixed bed reactor packed with activated carbon prepared from waste citrus peel, Appl. Chem. Eng., 29(1), 28-36 (2018).   DOI
11 K. H. Kang, S. K. Kam, and M. G. Lee, Adsorption characteristics of activated carbon prepared from waste citrus peels by NaOH activation, J. Environ. Sci. Int., 16, 1279-1285 (2007).   DOI
12 A. Ahmad and B. Hameed, Reduction of COD and color of dyeing effluent from a cotton textile mill by adsorption onto bamboo-based activated carbon, J. Hazard. Mater., 172, 1538-1543 (2009).   DOI
13 A. Khaled, A. E. Nemr, A. El-Sikaily, and O. Abdelwahab, Removal of Direct N Blue-106 from artificial textile dye effluent using activated carbon from orange peel: Adsorption isotherm and kinetic studies, J. Hazard. Mater., 165, 100-110 (2009).   DOI
14 Z. H. Huang, F. Kang, Y. P. Zheng, J. B. Yang, and K. M. Liang, Adsorption of trace polar methyl-ethyl-ketone and non-polar benzene vapors on viscose rayon-based activated carbon fibers, Carbon, 40, 1363-1367 (2002).   DOI
15 J. M. Thomas, E. L. Evans, M. Barber, and P. Swift, Determination of the occupancy of valence bands in graphite, diamond and less-ordered carbons by X-ray photo-electron spectroscopy, Trans. Faraday Soc., 67, 1875-1886 (1971).   DOI
16 C. Moreno-Castilla, M. V. Lopez-Ramon, and F. Carrasco-Marin, Changes in surface chemistry of activated carbons by wet oxidation, Carbon, 38, 1995-2001 (2000).   DOI
17 N. Kannan and M. M. Sundaram, 2001, Kinetics and mechanism of removal of methylene blue by adsorption on various carbons - A comparative study, Dyes Pigm., 51, 25-40 (2001).   DOI
18 K. H. Kang, S. K. Kam, and M. G. Lee, Preparation of activated carbon from waste citrus peels by $ZnCl_2$, J. Environ. Sci. Int., 16, 1091-1098 (2007).   DOI
19 S. K. Kam, K. H. Kang, and M. G. Lee, Characterisitics of activated carbon prepared from waste citrus peel by KOH activation, Appl. Chem. Eng., 28(6), 649-654 (2017).   DOI
20 T. Cheng, Y. Jiang, Y. Zhang, and S. Liu, Prediction of breakthrough curves for adsorption on activated carbon fibers in a fixed bed, Carbon, 42, 3081-3085 (2004).   DOI
21 L. Li, S. Liu, and J. Liu, Surface modification of coconut shell based activated carbon for the improvement of hydrophobic VOC removal, J. Hazard. Mater., 192, 683-690 (2011).   DOI
22 J. H. Yoon and G. O. Nelson, Application of gas adsorption kinetics: I. A theoretical model for respirator cartridge service life, AIHA J., 45, 509-516 (1984).   DOI
23 D. M. Ruthven, Principles of Adsorption and Adsorption Processes, p. 433, Wiley, NY, USA (1984).
24 Z. Huang, F. Kang, K. Liang, and J. Hao, Breakthrough of methylketone and benzene vapors in activated carbon fiber beds, J. Hazard. Mater., B98, 107-115 (2003).
25 Y. C. Chiang, P. C. Chiang, and C. P. Huang, Effect of pore structure and temperature on VOC adsorption on activated carbon, Carbon, 39, 523-534 (2001).   DOI
26 R. Harikrishnan, M. P. Srinivasan, and C. B. Ching, Adsorption of ethyl benzene on activated carbon from supercritical $CO_2$, AIChE J., 44, 2620-2627 (1998).   DOI
27 J. K. Lim, S. W. Lee, S. K. Kam, D. W. Lee, and M. G. Lee, Adsorption characteristics of toluene vapor in fixed-bed activated carbon column, J. Environ. Sci. Int., 14, 61-69 (2005).   DOI
28 M. A. Ahmad, W. M. A. Wan Daud, and M. K. Aroua, Adsorption kinetics of various gases in carbon molecular sieves (CMS) produced from palm shell, Colloids Surf. A, 312, 131-135 (2008).   DOI
29 S. W. Lee, S. K. Bae, J. H. Kwon, Y. S. Na, C. D. An, Y. S. Yoon, and S. K. Song, Correlations between pore structure of activated carbon and adsorption characteristics of acetone vapor, J. Korean Soc. Environ. Eng., 27, 620-625 (2005).
30 M. G. Lee, S. W. Lee, and S. H. Lee, Comparison of vapor adsorption characteristics of acetone and toluene based on polarity in activated carbon fixed-bed reactor, Korean J. Chem. Eng., 23, 773-778 (2006).   DOI