DOI QR코드

DOI QR Code

The Effect of Soil Characters on Removal of Odorous Gases during Carcasses Degradation with Efficient Microorganisms

토질 특성에 따른 가축사체 매몰지의 악취 저감 연구

  • Received : 2013.06.25
  • Accepted : 2014.04.09
  • Published : 2014.04.30

Abstract

The usage of efficient microorganism (EM) is increasing in concern for server purposes including odor removal during carcasses degradation. In this study, we have studied the type of soil and its effect on efficient microorganisms for the removal of odorous gases during buried carcasses degradation in lab-scale reactor. The carcasses are buried in the reactor with various soil types such as normal soil, 20% sandy and 20% clay soil with the efficient microorganism KEM. The efficient microorganisms KEM have the ability to stabilize the degradation of carcasses of the burial site. We have focused on the analysis of odorous gases such tri-methylamine (TMA), hydrogen sulfide ($H_2S$), methyl mercaptan (MM), dimethyl sulfide (DMS), dimethyl disulfide (DMDS), carbon dioxide ($CO_2$), and methane ($CH_4$) along with the changes of microbial community changed during complete degradation of buried carcasses for a year. The results suggested that the 20% sandy soil contain lesser level of $H_2S$ and MM (0.09 and 0.35 mg) but 20% clay has higher nitrogen compound removing effect and leave only less amount of ammonia and TMA (0.31 and 2.06 mg). The 20% sandy soil also has the ability to breakdown the carcasses more quality compared with other types of soil. Based on the data obtained in this study suggesting that, the use of 20% sandy soil can effectively control sulfur compounds whereas 20% clay soil controls nitrogen compounds in the buried soil. Depending on the type of the soil, the dominant of microbial communities and the distribution was change.

본 연구에서는 구제역으로 인해 발생된 가축사체 매몰지의 조기 안정화를 위하여 유용 미생물 KEM을 사용하였고, 토질에 따른 효과를 알아보기 위하여 매몰지 모형의 반응기를 통해 연구하였다. 반응기는 랩 스케일로 제작하였고, 토질 특성에 다양성을 주기 위하여 일반 토양, 20%의 사토와 섞은 일반 토양, 20%의 점토와 섞은 일반 토양을 각각 준비하였다. 각각의 토양과 유용 미생물 KEM과 섞은 후 사체를 매몰하였다. 분석 대상 악취 성분은 총 8가지로 이산화탄소, 메탄, 암모니아, 트리메틸아민, 황화수소, 메칠메르캅탄, 황화메틸과 이황화메틸이었다. 악취 분석 결과 황화수소와 메틸메르캅탄은 사토를 적용한 반응기에서 저감 효과를 보였고(각각 배출 잔량 0.09, 0.35 mg), 암모니아와 트리메틸아민은 점토를 적용한 경우 저감 효율이 높았다(각각 배출잔량 0.31, 2.06 mg). 이에 근거하여 사토는 황 화합물 악취 저감에, 점토는 질소 화합물 악취 저감에 효과를 나타내는 것으로 보인다. 또한, 토질의 특성에 따라 우점화된 미생물의 군집과 분포도가 변화되는 것을 확인하였다.

Keywords

References

  1. Ministry of Agriculture, Press release, North Korea, the occurrence of foot-and-mouth disease quarantine, quarantine measures further strengthen, Food and Rural Affairs(2013).
  2. Ministry of Agriculture, Domestic Animal Infectious Disease Control Law, Food and Rural Affairs(2013).
  3. Korda, A., Santas, P., Tenente, A. and Santas, R. "Petroleum hydrocarbon bioremediation: sampling and analytical techniques, in situ treatments and commercial microorganisms currently used," Appl. Microbiol. Biotechnol., 48, 677-686(1997). https://doi.org/10.1007/s002530051115
  4. Angelidaki, I. and Ahring, B. K. "Effects of free long-chain fatty acids on thermophilic anaerobic digestion," Appl. Microbiol. Biotechnol., 37(6), 808-812(1992).
  5. Banks, C. J. and Wang, Z. "Development of a two phase anaerobic digester for the treatment of mixed abattoir wastes," Water Sci. Technol., 40(1), 67-76(1999).
  6. Salminen, E. and Rintala, J. "Anaerobic digestion of organics solid poultry slaughterhouse waste - a review," Bioresour. Technol., 83, 13-26(2001).
  7. Cho, Y. G., Rhee, S. K. and Lee, S. T. "Effect of soil moisture on bioremediation of chlorophenol contaminated soil," Biotechnol. Lett., 22(11), 915-919(2000). https://doi.org/10.1023/A:1005612232079
  8. Zeev, R. and Aharon, A. "Anaerobic-Aerobic Process for Microbial Degradation of Tetrabromobisphenol," Appl. Environ. Microbiol., 66(6), 2372-2377(2000). https://doi.org/10.1128/AEM.66.6.2372-2377.2000
  9. Fuller, M. E. and Manning, J. F. "Microbiological changes during bioremediation of explosives-contaminated soils in laboratory and pilot-scale bioslurry reactors," Bioresour. Technol., 91(2), 123-133(2004). https://doi.org/10.1016/S0960-8524(03)00180-9
  10. Amann, R. I., Ludwig, W. and Schleifer, K. H., "Phylogenetic identification and in situ detection of individual microbial cells without cultivation," Microbiol. Rev., 59(1), 143- 169(1999).
  11. Chun, J., Kim, K. Y., Lee, J.-H. and Choi, Y. "The analysis of oral microbial communities of wild-type and toll-like receptor 2-deficient mice using a 454 GS FLX Titanium pyrosequencer," BMC Microbiol., 10(6), 101(2010). https://doi.org/10.1186/1471-2180-10-101
  12. Fava, F., Berselli, S., Conte, P., Piccolo, A. and Marchetti, L. "Effects of humic substances and soya lecithin on the aerobic bioremediation of a soil historically contaminated by polycyclic aromatic hydrocarbons (PAHs)," Biotechnol. Bioeng., 88(2), 214-223(2004). https://doi.org/10.1002/bit.20225
  13. Zhang, C., Hughes, J. B., Nishino, S. F. and Spain, J. C., "Slurry-phase biological treatment of 2,4-dinitrotoluene and 2,6-dinitrotoluene: role of bioaugmentation and effects of high dinitrotoluene concentrations," Environ. Sci. Technol., 34(13), 2810-2816(2000). https://doi.org/10.1021/es000878q
  14. Castaldi, F. J. and Ford, D. L. "Slurry bioremediation of petrochemical waste sludges," Water Sci. Technol., 25(3), 207-212(1992).