• Title/Summary/Keyword: 맥락 문제

Search Result 721, Processing Time 0.022 seconds

An Analysis of Problem-Posing Tasks in 7th grade Mathematics Textbooks Based on 2015 National Mathematics Curriculum (2015 개정 교육과정에 따른 수학교과서 문제제기 과제 분석 : 중학교 1학년을 중심으로)

  • Park, Mimi;Lee, Eun-Jung;Cho, Jin Woo
    • Communications of Mathematical Education
    • /
    • v.33 no.2
    • /
    • pp.123-139
    • /
    • 2019
  • This study analyzed how problem-posing tasks included in Korean middle school mathematics textbooks were distributed in terms of content area, task type, and context of task to investigate that the mathematics textbooks are giving students ample opportunities for problem-posing activities. The analysis of 10 mathematics textbooks for first grade in middle school according to the revised mathematics curriculum in 2015 found that the problem-posing tasks contained in the textbooks are insufficient in quantity and not evenly distributed in terms of content areas. There were also more problem-posing tasks with relatively moderate constraints than those with strong or weak constraints in terms of mathematical constraints. In addition, there were more problem-posing tasks that were not requiring students to make a new context, and more often camouflage contexts were used. Based on this, implications for improving mathematics problem-posing tasks in mathematics textbook were suggested.

A Study on Selection of Dividend and Divisor in Context of Determination of a Unit Rate Problem (단위비율 결정 맥락 문제에서 피제수와 제수 선택에 관한 연구)

  • Kim, Jung Hoon;Jeong, Sangtae;Roh, Eun Hwan;Kim, Seon Yu
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.23 no.2
    • /
    • pp.193-217
    • /
    • 2019
  • Researchers have observed one student who had difficulty in formulating a division equation. In the context of determination of a unit rate problem based on one student's case and previous research, we tried to examine in detail how students expressed the division formula, how to select the dividend and the divisor, and how they learned about those. First, a questionnaire was developed to analyze student's reactions and applied to the research participants. Interviews were conducted to discover how the participants choose the dividends and divisors derived from their cognitive characteristics corresponding to their selection method. The research exposed that the majority of the participants had difficulty in deciding the dividends and divisors. Moreover, the research indicated information that teaching methods need to be reformed. Finally, we obtained suggestions to place emphasis on how to decide a dividend and a divisor, why they made such selection and what the equation means. We proposed a learning method for the research above.

  • PDF

Exploring meaning of the context into the educational game (교육용 게임에서 맥락의 의미 고찰)

  • Park, Hyung-Sung;Baek, Young-Kyun
    • Journal of Korea Game Society
    • /
    • v.9 no.4
    • /
    • pp.11-20
    • /
    • 2009
  • The purpose of this study is to consider a line of context into the game-based learning. By reason of that, in this study this system of the roles into interaction game, both variable and flexible, will be considered in terms of what it means and what it takes however, beyond certain reasons, it does not change applicably with the place under the category of players. Therefore, it is obvious that more systems above-mentioned need to be developed on the knowledge-based environment by using educational games as well as assigning the roles of them.

  • PDF

고등학교 지구과학 탐구활동에서 소그룹의 상호작용 양식에 따른 반성적 탐구양식의 특징

  • Park, Mi-Ra;Jeong, Jin-U
    • 한국지구과학회:학술대회논문집
    • /
    • 2005.09a
    • /
    • pp.231-244
    • /
    • 2005
  • 이 연구는 고등학교 지구과학 탐구활동에서 소그룹활동을 학생들의 대화를 중심으로 분석하고, 반성적 탐구활동이 교육과정별로 어떤 차이를 보이고 소그룹내의 상호작용특성에 따라 반성적 탐구양식의 차이가 어떠한지 알아보는 것이다. 그럼으로써 학생들이 어떤 반성적 탐구양식을 보이며 어떻게 발달시키는지에 관한 이해를 제공하고, 수업속의 맥락은 이러한 반성적 탐구학습을 증진시키고 억압하기위해서 어떻게 상호작용 하는지를 알아보고자 하였다. 이에 대한 연구문제로 소그룹을 이용한 탐구활동 수업과 반성적 탐구활동수업 중 반성적 에피소드의 차이가 있는가, 소그룹내의 그룹상호작용의 특징에 따른 반성적 탐구유형의 차이는 있는가를 설정하였다. 이를 위해 고등학교 1학년 2개 학급을 선정 기존의 우리나라 교육과정에 의거한 탐구활동수업 4차시, 반성적 탐구교육과정 수업 4차시를 각각 실시하고 수업을 녹화 전사해서 언어행동 분석틀과 반성적 탐구의 3가지 맥락을 통해 분석하였다. 연구 결과 두 교육과정 모두 도입에서 두 교육과정 모두 A-AD맥락의 반성적 탐구가 전형적으로 자주 나타나며, 반성적 탐구 교육과정수업에서는 AD-SR가 주로 나오는 것으로 보아 과제활동초기에 역할 분담과 과제 활동의 전략을 세우며, 전략을 세울 때 영역개념을 이용하는 것을 안수 있었다. 우리나라 교육과정 수업에서는 반성적 탐구진술이 간단하고 계획과정이 짧으며, 주로 과제 맥락 내에서 반성적 탐구를 하는 것으로 나타났다. 전개부분에서는 두 교육과정모두 DI-DP, DI-A맥락의 반성적 탐구가 나타나 자료 항목과 자료 패턴 그리고 인공물과 관련시키는 반성적 탐구가 공통적으로 나타나며 반성적 교육과정수업에서는 대체로 자료 맥락의 영역개념과 과제 맥락을 연결시키는 반성적 탐구가 잘 나타나고 있다. 반면 우리나라 교육과정에서 주로 과제 맥락 내에서 반성적 탐구가 나타났다. 정리단계에서는 반성적 교육과정 수업에서는 DC-DP가 주로 나타났으며 우리나라 교육과정수업에서는 DC-DP DP-AD맥락의 반성적 탐구가 나타났다. 정리활동에서 우리나라 교육과정은 반성적 교육과정보다 자료 맥락의 영역개념을 더 자주 이용하고 다양한 맥락의 반성적 탐구가 나오고 있으며, 이는 우리나라 교육과정의 학습지의 활동이나 문제는 학생들에게 익숙하고, 자료 패턴을 가지고 행동결정으로 연결짓는 활동이 명확히 제시되었기 때문이라고 판단된다. 두 그룹의 상호작용 특징에 따른 반성적 탐구의 성향의 차이는 도입단계에서 그룹의 특징과 상관없이 A-AD, AD-SR맥락의 반성적 탐구가 나왔으며 전개와 정리단계에서는 N그룹에서는 DP와 관련된 의미 있는 반성적 탐구가 나오는 반면 M그룹에서는 이러한 맥락의 반성적 탐구는 아주 드물게 나타나며, GN과 관련된 행동결정이 자주 보이고 있었다. 정리활동시 주로 하는 기록 활동에서 N그룹에서는 다양한 맥락에서 반성적 탐구를 하고 있는 것에 비해 비교 그룹에서는 서로 견제하고 확인하는 상호작용의 특징에서 나타나는 AD-SR맥락의 반성적 탐구가 자주 나타났다. 반성적 탐구 척도 두 그룹을 비교 했을 때 CON 상호작용의 특징이 낮게 나타나는 N그룹이 양적으로 그리고 내용적으로 더 의미 있는 반성적 탐구를 했다

  • PDF

A Study of the Elementary School Teachers' Perception about Problem Situations in Real-Life Context of Subtraction of Natural Numbers (자연수 뺄셈의 실생활 맥락 문제 상황에 대한 초등교사의 인식)

  • Do, Joowon
    • Education of Primary School Mathematics
    • /
    • v.25 no.2
    • /
    • pp.197-211
    • /
    • 2022
  • In this study, we tried to find a way to improve the pedagogical decision-making practices related to the presentation order of 'large number' and 'small number' in problem situations of subtraction of the natural number. For this purpose, the elementary school teachers' perception about problem situations in real-life context of subtraction of natural numbers was investigated, and the collected data were analyzed qualitatively and quantitatively to identify teachers' pedagogical perceptions. As a result of this study, it was confirmed the need for consideration on how to set up a problem situations in real-life context of subtraction so that students can develop their ability to solve various types of problems. To this end, not only in a problem situation of subtraction where you have to think of 'large number' first and 'small number' later, but also about the introduction of problem situations in real-life context of subtraction in which you think about 'small number' first and 'large number' later, which often appears in real-life. You will need to recognize the need. And you should have a pedagogical view on this. The results of this study will be able to contribute to the preparation of pedagogical method that can expand the understanding of various problem situations where subtraction is applied from the lower grades of elementary school.

MIC 대수 부분에 관한 분석: RME 이론의 관점에서

  • Park, Jeong-Suk;Park, Eun-Ju;Jo, Gyeong-Hui;Kim, Ji-Yeong;Gwon, O-Nam;Jeong, Yeong-Ok
    • Communications of Mathematical Education
    • /
    • v.16
    • /
    • pp.163-164
    • /
    • 2003
  • 최근 수학교육에서는 네덜란드의 수학교육이론인 현실적 수학교육(Realistic Mathematics Education: 이하 RME) 이론에 대한 관심이 증대되고 있다. RME 이론의 관점에서 학생들은 만들어져 있는 수학을 수용하는 사람이 아니라 스스로 모든 종류의 수학적 도구와 통찰을 개발하는 활동적 참여자로서 다루어져야 한다. 따라서 수학 학습은 수학화될 수 있는 풍부한 맥락으로부터 시작해야하며, 이러한 수학화를 실제(reality)에 둘 수 있도록 기여할 수 있는 교재로 시작해야 한다. 최근 발간된 'Mathematics In Context(이하 MIC)'는 RME 이론을 반영한 중등학교용 교과서로 맥락 문제가 그 중심이 되고 있으므로 RME 이론의 구체화된 실제를 볼 수 있는 예가 될 수 있다. 지금까지 Freudenthal의 교육철학을 소개하는 문헌 연구를 비롯하여 RME 이론을 기반으로 하는 교수 학습의 효과 분석에 관한 연구가 초등학교를 중심으로 이루어지고 있으나 중등학교 이상의 수준에서 수행된 RME 관련 연구가 부족한 실정이다. 이에 본 연구는 RME 이론이 중등학교 이상에서 수행되는 예를 찾기 위해 MIC 대수 교과서 중 'Comparing Quantities(Kindt, Abels, Meyer, & Pligge, 1998)'를 중심으로 Treffers(1991)의 다섯 가지 교수 학습 원리(구성하기와 구체화하기, 여러 가지 수준과 모델, 반성과 특별한 과제, 사회적 맥락과 상호작용, 구조화와 연결성)가 어떻게 구현되고 있는지 살펴보고자 한다. RME의 수학 학습 이론은 학생들이 맥락과 모델을 사용하면서 다양한 수준의 수학화를 통해서 자신의 수학을 개발할 수 있도록 하는 것이다. MIC 교과서는 맥락 문제와 여러 가지 해결 전략을 제시함으로써 그러한 수학 수업을 할 수 있도록 안내하는 교재가 될 수 있다.

  • PDF

The Moderating Effects of Age and Gender on the Relationship between Values and Communication styles of Korean Adults (한국 성인의 가치와 의사소통 방식 간의 관계에서 연령과 성별의 조절효과)

  • Eunjung Son
    • Korean Journal of Culture and Social Issue
    • /
    • v.29 no.2
    • /
    • pp.199-221
    • /
    • 2023
  • This study examined the moderating effects of age and gender on the relationship between values and communication styles of Korean adults. Five hundred adult men and women across the country responded the questionnaires regarding cultural universal values (openness to change, self-enhancement, conservatism, and self-transcendence), cultural-specific values (collectivism, conformity to norms, emotional self-control, family recognition through achievement, and humility), high-context communication style, and low-context communication style. The results of this study are as follows. First, as a result of exploring the factors influencing the communication style, self-enhancement, emotional self-control, and self-transcendence significantly predicted the high-context communication style. Whereas openness to change, self-enhancement, conformity to norms, emotional self-control, and gender significantly predicted the low-context communication style. Second, age moderated the relationship between self-enhancement and high-context communication style. The high-context communication style significantly increased when the level of self-enhancement was high and the age was younger. Third, age and gender moderated the relationship between conformity to norms and high-context communication style. In the case of males with high conformity to norms and younger age, the high-context communication style significantly increased. Fourth, gender moderated the relationship between collectivism and low-context communication. As collectivism increased, men tended to increase low-context communication styles, while women tended to decrease it. Fifth, gender moderated the relationship between humility and low-context communication. In the case of women with high humility, their low-context communication style was significantly lowered. The implications and limitations of the results of this study were discussed.

An Analysis of the Word Problem in Elementary Mathematics Textbook from a Practical Contextual Perspective (초등 수학 교과서의 문장제에 대한 실제적 맥락 관점에서의 분석)

  • Kang, Yunji
    • Education of Primary School Mathematics
    • /
    • v.25 no.4
    • /
    • pp.297-312
    • /
    • 2022
  • Word problems can lead learners to more meaningfully learn mathematics by providing learners with various problem-solving experiences and guiding them to apply mathematical knowledge to the context. This study attempted to provide implications for the textbook writing and teaching and learning process by examining the word problem of elementary mathematics textbooks from the perspective of practical context. The word problem of elementary mathematics textbooks was examined, and elementary mathematics textbooks in the United States and Finland were referenced to find specific alternatives. As a result, when setting an unnatural context or subject to the word problem in elementary mathematics textbooks, artificial numbers were inserted or verbal expressions and illustrations were presented unclearly. In this case, it may be difficult for learners to recognize the context of the word problem as separate from real life or to solve the problem by understanding the content required by the word problem. In the future, it is necessary to organize various types of word problems in practical contexts, such as setting up situations in consideration of learners in textbooks, actively using illustrations and diagrams, and organizing verbal expressions and illustrations more clearly.

Analysis of the Problems in Statistics Units of Middle School Textbooks for the 3rd Grade in terms of Statistical Literacy (통계적 소양의 관점에서 살펴본 중학교 3학년 통계단원 문항 분석)

  • Go, Sang Mi;Kim, Mi Soon;Jung, Jae Kyun;Cho, Wan Youn
    • School Mathematics
    • /
    • v.19 no.4
    • /
    • pp.731-749
    • /
    • 2017
  • The purpose of this study is to find out whether the current mathematics textbooks are structured so as to cultivate students' statistical literacy. To do this, we analyzed the problems of the statistics units of 9 kinds of middle school 3rd grade mathematics textbook according to 2009 revised mathematics curriculum based on four types of context and statistical problem solving process. As a result of the analysis, among the four types of context, the problems that correspond to the type of personal context was the highest in 67% and among statistical problem solving process, the data analysis process was the highest in 72.85%. According to the results of this study, it is necessary to include the problems that can recognize the necessity of statistics through the use of various contexts and that can develop the statistical literacy through the activities that from the process of collecting data to guessing reasonable conclusions from the presented data.

Students' Problem Solving Based on their Construction of Image about Problem Contexts (문제맥락에 대한 이미지가 문제해결에 미치는 영향)

  • Koo, Dae Hwa;Shin, Jaehong
    • Journal of the Korean School Mathematics Society
    • /
    • v.23 no.1
    • /
    • pp.129-158
    • /
    • 2020
  • In this study, we presented two geometric tasks to three 11th grade students to identify the characteristics of the images that the students had at the beginning of problem-solving in the problem situations and investigated how their images changed during problem-solving and effected their problem-solving behaviors. In the first task, student A had a static image (type 1) at the beginning of his problem-solving process, but later developed into a dynamic image of type 3 and recognized the invariant relationship between the quantities in the problem situation. Student B and student C were observed as type 3 students throughout their problem-solving process. No differences were found in student B's and student C's images of the problem context in the first task, but apparent differences appeared in the second task. In the second task, both student B and student C demonstrated a dynamic image of the problem context. However, student B did not recognize the invariant relationship between the related quantities. In contrast, student C constructed a robust quantitative structure, which seemed to support him to perceive the invariant relationship. The results of this study also show that the success of solving the task 1 was determined by whether the students had reached the level of theoretical generalization with a dynamic image of the related quantities in the problem situation. In the case of task 2, the level of covariational reasoning with the two varying quantities in the problem situation was brought forth differences between the two students.