• Title/Summary/Keyword: 매립폐기물

Search Result 587, Processing Time 0.026 seconds

Probabilistic Characteristics Analysis of Disturbed Function for Geosynthetic-Soil Interface Using Cyclic Shear Tests (동적전단시험을 이용한 토목섬유-흙 접촉면에 대한 교란도함수의 확률특성 분석)

  • Huh, Jungwon;Park, Innjoon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.11
    • /
    • pp.81-91
    • /
    • 2012
  • This paper mainly deals with the analysis of probabilistic characteristics of the disturbed function proposed to predict dynamic behavior of Geosynthetic-soil interface as the lining and cover systems used in waste landfills. Calibration and statistical property estimation of the parameters in the disturbed function model were first performed using many experimental data obtained from a new multi-purpose interface apparatus (M-PIA). In order to analyze the effect due to changes in chemical degradation and normal loads condition, probabilistic properties such as mean, coefficient of variation and distribution type of the disturbed function were evaluated using both the LHS method known to be a very efficient sampling scheme and the estimated statistical property of A and Z. As a result, variation of the disturbed function is found to range approximately from 10~28% according to the level of ${\xi}_D$ and Weibull appears to be the most adequate distribution type at almost all levels of ${\xi}_D$. It is concluded that a probabilistic safety assessment method for Geosynthetic-soil interface considering uncertainty in shear strength can be developed by utilizing probabilistic properties of the disturbed function obtained in this study.

Performance Evaluation of the Field Scale Sequential Washing Process for the Remediation of Arsenic-Contaminated Soils (Field 규모 연속 토양세척공정을 이용한 비소 오염토양 정화 효율 평가)

  • Choi Sang Il;Kim Kang Hong;Han Sang-Keun
    • Journal of Soil and Groundwater Environment
    • /
    • v.10 no.6
    • /
    • pp.68-74
    • /
    • 2005
  • This study was carried out to evaluate the feasibility of field-scale sequential soil washing process for remediation on Kyongsangnamdo D mine soils which was heavily contaminated by arsonic. Arsenic concentration of untreated soils was $321\pm32mg/kg$. By applying the basic operating condition which was proposed from several pilot-scale experiments, arsenic concentration of treated soils was reduced 2.04 mg/kg ($99\%$ removal efficiency). We optimized the basic operating condition (mainly on washing solution concentration, cut-off size, and mixing ratio) to improve efficiently and economically the field-scale sequential soil washing process. The resulting optimized conditions were that solution concentration is 0.2M HCl, 1.0M HCl, 1.0M NaOH, that the cut-off size is 0.15mm (seive $\sharp$100), and that the mixing ratio is 1 3. Also, the optimized pH value for soil washing effluent treatment was 6 (33 ppb), in which the precipitation disruption caused by supersaturation of the floe did not occur. Results of TCLP tests showed that arsenic concentration from the washed gravels was 1.043 mg/L, that from soils ND (not detected), and that from filter cakes 0.066 mg/L. Also, the water content as a percentage of dewatered sludges was low $(48\%)$ and so the dewatered sludges can be disposed by landfilling. Through these results, we can concluded that tile field-scale sequential soil washing process developed in this study is adopted for remediation of arsenic-contaminated soils.

Bottom Ash on the Application for Use as Fine Aggregate of Concrete (바텀 애시를 콘크리트 잔골재로 사용하기 위한 활용성에 관한 연구)

  • Kim, Seong-Soo;Lee, Jeong-Bae;Park, Seung-Ho
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.2 no.3
    • /
    • pp.173-179
    • /
    • 2014
  • This is an experimental study for recycling coal ash left over from coal use as a potential fine aggregate in concrete. Coal ash is generally divided into either fly ash or bottom ash. Fly ash has been utilized as a substitution material for cement in concrete mixes. On the other hand, bottom ash has the problem of low recycling rates, and thus it has been primarily reclaimed. This study partially substituted fine concrete aggregates with bottom ash to increase its application rate and therefore its recycling rate; its suitability for this purpose was confirmed. The concrete's workability dropped noticeably with increasing bottom ash content when a fixed water-cement ratio of concrete mix was used. Thus, concrete mixes with higher ratio levels are required. To address this problem, concrete was mixed using a polycarboxylate high-range water reducing agent. The fluidity and air entrainment immediately after mixing the concrete and 1 h after mixing were measured, thereby replicating the time concrete is placed in the field when produced either in a ready-mixed concrete or in a batch plant. As a result of this research, the workability and air entrainment were maintained 1 h after mixing for a concrete mixture with approximately 30% of its fine concrete aggregates substituted with the bottom ash. A slight drop in compression strength was seen; however, this confirmed that potential of using bottom ash as a fine aggregate in concrete.

Analysis of Physical and Chemical Properties of CFBC Fly Ash in Vietnam for Solidification (고화재 활용을 위한 베트남 CFBC 플라이애시의 물리적·화학적 특성 분석)

  • Min, Kyongnam;Lee, Jaewon;Lee, Dongwon;Kim, Jinhee;Jung, Chanmuk
    • The Journal of Engineering Geology
    • /
    • v.27 no.3
    • /
    • pp.245-253
    • /
    • 2017
  • Vietnam CFBC fly ash has high CaO content and can be used as a solidification agent for soft ground improvement. However, most fly ash is treated as landfill or waste. In order to utilize fly ash as a solidification agent for soil improvement, the characteristics of fly ash must be accurately determined. In this study, laboratory tests were conducted on fly ash from four CFBC power plants to evaluate the utility of Vietnam fly ash as a solidification agent. As a result of analyzing the physical properties, it was analyzed that all four samples were suitable as material for solidification agent and have suitable particle size for the improvement of soft ground. As a result of analysis of chemical characteristics, it was analyzed that the fly ash of one place could be used as a solidification agent because of the high content of free-CaO. The remaining three fly ash was not suitable for use as a solidification agent due to low Free-CaO content. However, it has a chemical composition similar to that of general fly ash in Korea, so it can be recycled in various ways.

Disassembly and Compositional Analysis of Waste LCD Displays (폐(廢) 디스플레이의 해체(解體) 및 성분조사(成分調査))

  • Lee, Sungkyu;Kang, Leeseung;Lee, Chan Gi;Hong, Myung Hwan;Cho, Sung-Su;Hong, Hyun Seon
    • Resources Recycling
    • /
    • v.22 no.2
    • /
    • pp.29-36
    • /
    • 2013
  • Although Korean domestic production of flat panel displays totalled more than 48 trillion KRW in 2007, most of the flat panel display wastes have been land-filled or incinerated, which greatly overshadows Korean national prestige as a world leading producer and developer of flat panel display devices. Countries such as Japan or EU possess quite limited land-fill capability and have sought ways to dispose of WEEEs from environment-friendly perspective rather than recovery of valuable materials from the wastes. Considering relatively short cycle of about 5 years for flat panel display devices, it is estimated that more than 5 million units will be accumulated as wastes by 2015. Urban mining is a most suitable countermeasures against China's monopoly of rare and rare earth metals, which are contained in flat panel display wastes. Therefore, materials recycling of waste LCD units has to be developed and commercialized soon enough for economic and environment-friendly recovery of valuable resources hidden in LCD wastes.

Distribution of Sulfate-reducing Bacteria in Landfill Leachate and their Role on Insolubilization of Heavy metals (폐기물매립지 침출수에서 황산염환원균의 분포와 중금속 불용화역할)

  • Jung, Kweon;Shin, Jai-Young;Jung, Il-Hyun;Takamizawa, Kazuhiro;Yoo, Young-Sik
    • Journal of Environmental Health Sciences
    • /
    • v.23 no.3
    • /
    • pp.27-39
    • /
    • 1997
  • This study, collaborated Gifu University, Japan, was performed to analyze chemical pollutants and microorganism and to clarify the distribution of sulfate-reducing bacteria and their insolubilization of heavy metal ions in leachates sampled seasonally between 1994 and 1996 from Nanjido waste landfill site, sampled 4 times between 1995 and 1996 from Pusan and Daejeon waste landfill site, and sampled 1 time between 1992 and 1994 from Hokkaido, Nagoya, Osaka and Hukuoka waste landfill site in Japan. The results were as follows: 1. The temperatures of internal leachate and leachate effluent were 40$\circ$C and 30$\circ$C, respectively, and the pH values of both leachates were about 8.0 at Nanjido waste landfill site. The concentration of SO$_4^{-2}$ gradually increased with the degree of stabilization and that of NO$_3$-N was detected in a part of sampling sites at one and half years, and in all sampling sites at 3 years after completion of landfill. 2. The organic substances in leachate of Nanjido waste landfill site decreased with the degree of stabilization and they were very fluctuated with measuring point and time. The concentration of organic substance and heavy metals in internal leachate were higher than in leachate effluent and those of Cd, Hg, and Pb were lower than detection limit except a part of samples in 1996. 3. APCs in internal leachate and leachate effluent were not much different and the minimum of APCs in internal leachate and leachate effluent were $1.0\times 10^4$/ml and $4.0\times 10^1$/ml, respectively. 4. The maximums of SRBs in Nanjido, Pusan, and Daejeon waste landfill site were 9180 MPN/ml, 24000 MPN/ml, and 348 MPN/ml, respectively and the maximum of SRBs in Japan waste landfill site was 9300 MPN/ml. 5. During 2-week-SRB culture, the values of MPN were high at 50$\circ$C for initial culture period and at 30$\circ$C for last culture period. MPN started to appear at first day and rapidly increased between 7th day and 9th day. 6. Cadmium and copper were insolubilized by SRB within 6 hr and iron and zinc were done within 48 hr. The rates of insolubilization of Cd, Cu, Fe, Zn, T-Cr were 100%, 99.5%, 95.0%, 99.8%, 16.1% after 48 hr treatment with SRB, respectively.

  • PDF

Evaluation of Field Applicability with Coal Mine Drainage Sludge (CMDS) as a Liner: Part I: Physico-Chemical Characteristics of CMDS and a Mixed Liner (차수재로의 광산슬러지 재활용 적용성 평가: Part I: 광산배수슬러지 및 혼합차수재의 물리·화학적 성질)

  • Lee, Jai-Young;Bae, Sun-Young;Woo, Seung-Hyun
    • Journal of the Korean Geosynthetics Society
    • /
    • v.10 no.2
    • /
    • pp.67-72
    • /
    • 2011
  • CMDS (Coal Mine Drainage Sludge) is mainly generated from acid mine drainage during physicochemical treatment or electrical purification. CMDS is well worth considering on recycling possibilities in various areas. This research applies the liner and cover materials using waste disposal landfill generally to treat acid mine drainage sludge. In this Part I of the two parts paper, physico-chemical characteristics of CMDS, bentonite and cement to prepare the liner have been identified using XRD, XRF, FESEM. In addition, combining their physicochemical characteristics, the optimum mixing ratio has been determined to be 1: 0.5: 0.3 for CMDS: bentonite: cement by the batch tests. Initial permeability of CMDS was $7.10{\times}10^{-7}cm/s$. Through the leaching test, it was confirmed that its mixture was environmentally safe. In the Part 2, a large-scale Lysimeter was used to simulate the effects of the layer on the freeze/thaw for evaluation on field applicability and stability.

A Preliminary Investigation on Pozzolanic Activity of Dredged Sea Soil (소성 준설토의 포졸란 반응성에 대한 기초 연구)

  • Kim, Ji-Hyun;Moon, Hoon;Chung, Chul-Woo;Lee, Jae-Yong
    • Journal of the Korea Institute of Building Construction
    • /
    • v.14 no.6
    • /
    • pp.531-536
    • /
    • 2014
  • Recently, the amounts of dredge sea soil in south Korea have been increasing because of various maintenance works at harbors and rivers. Dredged sea soil contains various contaminants. Hence, prior to recycling the dredged sea soil, the various contaminants should be removed to prevent a secondary contamination due to the leaching of hazardous chemicals. Pretreated dredged sea soil can be buried under the ground or used for land reclamation. In this study, however, pretreated dredged sea soil was used to investigate the level of pozzolanic activity. The properties of pretreated dredged sea soil were investigated, the method for heat treatment was determined, and the compressive strength of mortar using dredged sea soil was examined. According to the XRF result, the main components of dredged sea soil were $SiO_2$ of over 55%, and $Al_2O_3$ and $SO_3$ of some amounts. Results from XRD and TG/DTA showed that pretreated dredged sea soil can be used as a pozzolanic material. When dredged sea soil was thermally treated for 90 min at $550^{\circ}C$, a compressive strength result was similar to that of control mortar.

The Effect of Column Process on the Treatment of Municipal Solid Waste Leachate (Column 장치를 이용한 도시쓰레기 침출수의 처리효과)

  • Han, Mun-Gyu;Cho, Ju-Sik;Lee, Hong-Jae;Heo, Jong-Soo
    • Korean Journal of Environmental Agriculture
    • /
    • v.11 no.3
    • /
    • pp.201-208
    • /
    • 1992
  • Municipal landfill leachate, a major source of soil contamination and ground water pollution, causes serious environmental problems. To investigate the removal efficiency of pollutants in the leachate by sand, briquet ash, fly ash, and activated carbon columns, COD and some pollutants in the leachate passed through each column for 8 weeks were examined. Average COD removal efficiency for 8 weeks was 83%, 45%, and 43% by activated carbon, briquet ash and fly ash columns, respectively. COD was not effectively reduced by sand column. Average ${NH_4}\;^+$ removal efficiency for 8 weeks was more than 60% by ail columns. Hardness was effectively removed for 8 weeks by fly ash and activated carbon columns. Anoins including $PO_4\;^{3-}$, $CI^-$ and $SO_4^{2-}$ were not removed by all columns.

  • PDF

Integration of Geographic Information System and Air Dispersion Model (지리정보체계와 대기확산의 통합)

  • Kim, Myung-Jin;Han, Eui-Jung;Kang, In-Goo;Kim, Jeong-Soo
    • Journal of Environmental Impact Assessment
    • /
    • v.5 no.1
    • /
    • pp.61-67
    • /
    • 1996
  • Environmental Impact Assessment (EIA) in Korea has worked toward environmental conservation and decision making since the Environmental Impact Statement of 1981. In order to implement the EIA process effectively, we have developed a system for and various methods of EIA. Among these methods, the Geographic Information System (GIS), which was introduced recently in Korea, can be used to integrate geographic and attribute data effectively. So GIS begins to increase the necessity of the application in EIA process. This study includes the integration method of the GIS and air dispersion model on the odor impact assessment of $NH_3$ emission in landfill sites. First, it computes surface values by grids using the Digital Elevation Model (DEM). Second, it presents predicted data considering topography and climate by grids. Third, it shows the overlaying analysis of the administrative map including population and odor predictive data. The results could systematically analyze impact areas, and assess residential impact by alternatives. Integration analysis of the air predictive model and GIS as a residential area assessment can support negotiations of public and proponent in EIA.

  • PDF