Probabilistic Characteristics Analysis of Disturbed Function for Geosynthetic-Soil Interface Using Cyclic Shear Tests

동적전단시험을 이용한 토목섬유-흙 접촉면에 대한 교란도함수의 확률특성 분석

  • 허정원 (전남대학교 공학대학 해양토목공학과) ;
  • 박인준 (한서대학교 이공학부 토목공학과)
  • Published : 2012.11.01

Abstract

This paper mainly deals with the analysis of probabilistic characteristics of the disturbed function proposed to predict dynamic behavior of Geosynthetic-soil interface as the lining and cover systems used in waste landfills. Calibration and statistical property estimation of the parameters in the disturbed function model were first performed using many experimental data obtained from a new multi-purpose interface apparatus (M-PIA). In order to analyze the effect due to changes in chemical degradation and normal loads condition, probabilistic properties such as mean, coefficient of variation and distribution type of the disturbed function were evaluated using both the LHS method known to be a very efficient sampling scheme and the estimated statistical property of A and Z. As a result, variation of the disturbed function is found to range approximately from 10~28% according to the level of ${\xi}_D$ and Weibull appears to be the most adequate distribution type at almost all levels of ${\xi}_D$. It is concluded that a probabilistic safety assessment method for Geosynthetic-soil interface considering uncertainty in shear strength can be developed by utilizing probabilistic properties of the disturbed function obtained in this study.

이 논문은 폐기물 매립지에 사용되는 차수시설로서 토목섬유-흙 시스템의 접촉면에 대한 동적거동을 예측하기 위하여 제안된 교란도함수의 확률적 특성 분석에 대한 내용을 다루고 있다. 우선 다기능 접촉면 전단시험기(M-PIA)에 의한 다수의 시험자료를 활용하여 토목섬유-흙의 접촉면에 대한 교란도함수 모델의 매개변수를 보정하고 그 통계특성을 산정하였다. 다음으로 화학적인자와 상재하중의 영향을 고려한 교란도함수의 확률적 특성분석을 위하여, 산정된 A와 Z의 통계특성과 매우 효율적인 샘플링기법인 LHS기법을 적용함으로써 교란도함수 모델의 확률적 특성인 평균, 변동계수 및 분포형태를 분석하였다. 그 결과로서 ${\xi}_D$의 수준에 따라 교란도함수의 변동성은 약 최소 10%에서 최대 28% 정도로 나타났으며, 분포형태는 대부분의 ${\xi}_D$수준에서 Weibull 분포가 가장 적합한 것으로 나타났다. 이 연구를 통하여 획득한 교란도함수의 확률특성을 활용하면 향후 접촉면 전단강도의 불확실성과 변동성을 정량적으로 명확하게 고려할 수 있는 토목섬유-흙 접촉면의 확률론적 안전성 평가기법의 개발이 가능할 것으로 판단된다.

Keywords

References

  1. 전남대학교 산학협력단(2012), 확률변수의 확률분포/매개변수 결정 프로그램(HDIST), 프로그램등록 제C-2012-011085호.
  2. Alfaro, M. C., Miuru, N. and Bergado, D. T.(1995), Soil-Geogrid Reinforcement Interaction by Pullout and Direct Shear Tests, Geotechnical Testing Journal, Vol. 18, No. 2, pp. 157-167. https://doi.org/10.1520/GTJ10319J
  3. Desai, C. S.(1974), A Consistent Finite Element Technique for Work-Softening Behavior, J.T. Oden et al.(eds.), Int. Conf. on Comp. Meth. in Nonlinear Mechanics, University of Arizona, pp. 45-54.
  4. Desai, C. S.(1995), Chapter 8: Constitutive Modeling Using the Disturbed State as Microstructure Self-Adjustment Concept, Continuum Models for Material with Microstructure, H. B. Muhlhaus, ed., John Wiley & Sons, UK.
  5. Desai, C. S. and Ma, Y.(1992), Modeling of Joints and Interfaces Using the Disturbed-state Concept, International Journal for Numerical and Analytical Methods in Geomechanics, Vol. 16, No. 9, pp. 623-653. https://doi.org/10.1002/nag.1610160903
  6. Dixon, N., Jones, D. R. V. and Fowmes, G. J.(2006), Interface Shear Strength Variability and Its Use in Reliability-based Landfill Stability Analysis, Geosynthetics International, Vol. 13, No. 1, pp. 1-14. https://doi.org/10.1680/gein.2006.13.1.1
  7. Esterhuizen, J. J. B., Filz, G. M. and Duncan, J. M.(2001), Constitutive Behavior of Geosynthetic Interfaces, Journal of Geotechnical and Geoenvironmental Engineering, Vol. 127, No. 10, pp. 834-840. https://doi.org/10.1061/(ASCE)1090-0241(2001)127:10(834)
  8. Filz, G. M., Esterhuizen, J. J. B. and Duncan, J. M.(2001), Progressive Failure of Lined Waste Impoundments, Journal of Geotechnical and Geoenvironmental Engineering, Vol. 127, No. 10, pp. 841-848. https://doi.org/10.1061/(ASCE)1090-0241(2001)127:10(841)
  9. Grag, K. G. and Saran, S.(1990), Evaluation of Soil-Reinforcement Interface Friction, Proc. Indian Geotech. Conf., Bombay, India, Vol. 1, pp. 27-31.
  10. Haldar, A. and Mahadevan, S.(2000), Probability, Reliability and Statistical Methods in Engineering Design, John Wiley & Sons, New York, pp. 106-134.
  11. Huh, J., Haldar, A., Kwak, K. and Park, J.-H.(2010), Realistic Risk Assessment of Axially Loaded Pile-soil System Using a Hybrid Reliability Method, Georisk: Assessment and Managemnt of Risk for Engineered Systems and Geohazards, Vol. 4, No. 3, pp. 118-126. https://doi.org/10.1080/17499510903416154
  12. Huh, J., Park, J.-H., Kim, K.-J., Lee, J.-H. and Kwak, K.-S.(2007), Reliability Estimation of Static Design Methods for Driven Steel Pipe Piles in Korea, Journal of the Korean Geotechnical Society, Korean Geotechnical Society, Vol. 23, No. 12, pp. 61-73.
  13. Kaliakin, V.N. and Li, J.(1995), Insight into Deficiencies Associated with Commonly Used Zero-thickness Interface Elements, Computers and Geotechnics, Vol. 17, No. 2, pp. 225-252. https://doi.org/10.1016/0266-352X(95)93870-O
  14. Koerner, R.M.(1994), Designing with Geosynthetics, 3rd. Ed., Prentics Hall Inc., Englewood Cliffs, N.J., pp. 125-134.
  15. Park, Innjoon, Kwak, Changwon, Kim, Jaekeun(2010), The Characteristics of Dynamic Behaviors for Geosynthetic-soil Interface Considering Chemical Influence Factors, Journal of the Korean Geoenvironmental Society, Vol. 11, No. 11, pp. 47-54.