The Journal of Korean Institute of Communications and Information Sciences
/
v.40
no.9
/
pp.1793-1801
/
2015
In a recent work, kernel recursive least-squares tracker (KRLS-T) algorithm has been proposed. It is capable of tracking in non-stationary environments using a forgetting mechanism built on a Bayesian framework. The forgetting mechanism in KRLS-T is implemented by a fixed forgetting factor. In practice, however, we frequently meet that the fixed forgetting factor cannot handle time-varying system effectively. In this paper we propose a new KRLS-T with a variable forgetting factor. Experimental results show that proposed algorithm can handle time-varying system more effectively than the KRLS-T.
Proceedings of the Acoustical Society of Korea Conference
/
1998.06e
/
pp.165-168
/
1998
본 논문에서는 충격성 잡음에 강인하기 위한 시변 주파수 추정 기법을 제안하였다 충격성 잡음에 강인하기 위해서는 충격성 잡음에 의한 추정 변수의 동요를 제한하고 추정된 오차가 향후 추정시 영향을 미치는 오차의 전파현상을 제한하여야 한다. 충격성 잡음에 의한 추정오차의 전파를 제한하기 위해서는 망각인자의 도입이 필요함을 증명하였고 보다 효과적으로 사용하기 위해서 가변 망각인자를 도입하였다. 가변 망각인자의 도입으로 충격성 잡음에 의한 오차의 전파를 선택적으로 제한할 수 있으며 충격성 잡음에 의한 추정계수의 변동은 영향함수 측면에서 Huber함수를 이용하여 제한하였다. 제안된 알고리듬은 Huber함수와 가변망각인자의 도입으로 충격성 잡음에 의해 생기는 오차의 크기와 오차의 영향이 전파되는 것을 적응적으로 제한하기 때문에 모의실험을 통해 기존의 칼만 알고리듬보다 나은 성능을 보임을 알 수 있었다.
The Journal of Korean Institute of Communications and Information Sciences
/
v.41
no.9
/
pp.1141-1145
/
2016
In general, a variable forgetting factor is applied to the RLS algorithm for the time-varying parameter estimation in the non-stationary environments. The introduction of a variable forgetting factor to RLS needs heavy additional calculation complexity. We propose a new Gauss Newton variable forgetting factor RLS algorithm which needs small amount of calculation as well as estimates the better parameters in time-varying nonstationary environment. The algorithm performs as good as the conventional Gauss Newton variable forgetting factor RLS and the required additional calculation complexity reduces from $O(N^2)$ to O(N).
Proceedings of the Acoustical Society of Korea Conference
/
autumn
/
pp.179-182
/
2001
본 논문에서는 기존의 VFF PASTd 알고리듬의 개선안을 제시하였다. 이 알고리듬은 각 부공간마다 가변망각인자를 각각 사용하던 기존 방법과는 달리 최종 잔류 오차를 이용하여 하나의 망각인자를 계산하고 이것을 이용함으로써 계산량을 줄임과 동시에 망각인자를 보다 정확히 구할 수 있다. 여기서는 주파수 추정 문제에 대한 모의 실험을 통해 제안된 알고리듬이 우수함을 입증하였다.
본 논문은 공간적으로 변하는 스펙트럼을 추정하는 새로운 적응 방법을 제안한다. 제안한 방법에서는 오래된 upstream의 데이터를 망각함으로서 신호의 nonstationarity를 고려해주는 시변망각인자의 개념을 recursive least square(RLS) 알고리즘에 도입하였으며, 관심이 있는 공간영역에서 탐사침을 천천히 움직여 얻은 하나의 데이터 군으로부터 downstream 스펙트럼을 추정하였다. 제시한 방법의 실현 가능성은 실제 실험(wind tunnel 이용)을 통해서 얻은 공간적으로 변하는 nonstatonary 신호의 스펙트럼을 추정하는 과정에서 입증되며 또한 기존의 방법들과 비교함으로서 그 우수성을 보인다.
Seo, YoungKwang;Shin, Jong-Woo;Seo, Won-Gi;Kim, Hyoung-Nam
Journal of the Institute of Electronics and Information Engineers
/
v.51
no.5
/
pp.177-187
/
2014
This paper proposes a fast subspace tracking methods, which is called GVFF FAPI, based on FAPI (Fast Approximated Power Iteration) method and GVFF RLS (Gradient-based Variable Forgetting Factor Recursive Lease Squares). Since the conventional FAPI uses a constant forgetting factor for estimating covariance matrix of source signals, it has difficulty in applying to non-stationary environments such as continuously changing DOAs of source signals. To overcome the drawback of conventioanl FAPI method, the GVFF FAPI uses the gradient-based variable forgetting factor derived from an improved means square error (MSE) analysis of RLS. In order to achieve the decreased subspace error in non-stationary environments, the GVFF-FAPI algorithm used an improved forgetting factor updating equation that can produce a fast decreasing forgetting factor when the gradient is positive and a slowly increasing forgetting factor when the gradient is negative. Our numerical simulations show that GVFF-FAPI algorithm offers lower subspace error and RMSE (Root Mean Square Error) of tracked DOAs of source signals than conventional FAPI based MUSIC (MUltiple SIgnal Classification).
RLS (Recursive-least-squares) algorithm is known to have good convergence and excellent error level after convergence. However, there is a disadvantage that numerical instability is included in the algorithm due to inverse matrix calculation. In this paper, we propose an algorithm with no matrix inversion to avoid the instability aforementioned. The proposed algorithm still keeps the same convergence performance. In the proposed algorithm, we adopt an averaged gradient-based step size as a self-adjusted step size. In addition, a variable forgetting factor is introduced to provide superior performance for time-varying channel estimation. Through simulations, we compare performance with conventional RLS and show its equivalency. It also shows the merit of the variable forgetting factor in time-varying channels.
The RLS (Recursive Least Squares) method is a broadly used adaptive algorithm for signal processing in electronic engineering. The RLS algorithm shows a good performance and a fast adaptation within a stationary environment, but it shows a Poor performance within a non-stationary environment because the method has a fixed forgetting factor. In order to enhance 'tracking' performances, BLS methods with an adaptive forgetting factor had been developed. This method shows a good tracking performance, however, it suffers from heavy computational loads. Therefore, we propose a modified AFF-RLS which has relatively low complexity m this paper.
Song Joon-il;Kim Yoon Chung;Lim Jun-seok;Sung Koeng-Mo
Proceedings of the Acoustical Society of Korea Conference
/
autumn
/
pp.361-364
/
2001
지금까지 수중음향 시스템에서 jammer 신호를 제거하는 방법에 관한 많은 연구가 진행되어 왔다. 그러나, 기존의 빔형성 기법은 간섭 신호원(interference source)이 움직일 경우 그 성능이 현저히 떨어지는 문제점을 갖고 있다. 이러한 현상은 수중 음향 시스템이 간섭 신호원의 움직임에 대하여 즉각적으로 null의 위치를 변화시키지 못하기 때문에 발생하게 된다. 이를 해결하기 위해서는 시간에 따라 위치가 변하는 jammer 환경에 대하여 대응할 수 있는 새로운 알고리즘이 필요하게 된다. 이러한 단점을 보완하기 위해 본 논문에서는 가변 망각인자를 갖는 적응 빔형성 기법을 제안하고, 컴퓨터 모의실험을 통하여 제안된 알고리즘이 기존의 적응 빔형성 기법에 비하여 출력 SINR(signal to interference plus noise ratio)의 측면에서 성능 향상을 가짐을 보였다.
기존의 신호 공간 추적 방법을 이용한 blind multiuser detector는 nonstationary 환경에서 새로운 환경에 적응하기 위해 비교적 긴 시간을 필요로 한다 본 논문은 가변 망각 인자를 도입한 확장 PASTd (Projection Approximation Subspace Tracking with Deflation) 알고리즘을 이용하여 환경 변화에 좀더 신속히 적응하는 성능 향상을 모의실험을 통해 보이고자 한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.