
56

Spectral Estimation of Nonstationary Signals Using RLS 
Algorithm with a Variable Forgetting Factor

시 변 망각 인자를 갖는 RLS 알고리 즘을 이 용한 

Nonstationary 신호의 스펙트럼 추정

Yong Soo Cho*

*중앙대학교 전자공학과
Department of Electronics Engineering, Chung-Ang 
University

접수일자: 1992. 10. 17.

趙鋪洙*

ABSTRACT

This paper presents a new adaptive method of estimating power spectra which vary spatially (i.e,, are spatially 

nonstationary). This method estimates downstream power spectra from a single data set obtained by slowly moving 

a probe over the spatial region of interest. The concept of a variable forgetting factor, which compensates for the 

nonstationarity of a signal by forgetting "old" upstream data, is developed and incorporated into the recursive least 

square (RLS) algorithm to estimate power spectra of spatially nonstationary signals obtained from a moving probe. 

The feasibility and practicality of the moving probe approach is applied to the spectral estimation of a spatially 

nonstationary signal encountered in transition to turbulence studies conducted in a small wind tunnel. The resulting 

spectra compare very well with spectra estimated via the traditional approach, i.e.,the fixed probe approach.

요 약

본 논문은 공간적으로 변하는 스펙트럼을 추정하는 새로운 적응 방법을 제안한다. 제안한 방법에서는 오래된 upstream의 

데이타를 망각함으로서 신호의 nonstationarity를 고려해주는 시변망각인자의 개념을 recursive least square (RLS) 알고 

리즘에 도입하였으며, 관심이 있는 공간영역에서 탐사침올 천천히 움직여 얻은 하나의 데이타 군으로부터 downstream 스 

펙트럼을 추정하였다. 제시한 방법의 실현 가능성은 실제 실험 (wind tunnel 이용을 통해서 얻은 공간적으로 변하는 

nonstationary 신호의 스펙트럼을 추정하는 과정에서 입증되며 또한 기존의 방법들과 비교함으로서 二丄 우수성을 보인다.

I. Introduction

Spectral analysis, a powerful tool in time series 

analysis, has proven to be very useful in the 

study of acoustis, speech, communications, radar, 

sonar, ultrasonics, biology, biomedicine, optics, 

etc. Nonparametric methods for nonstationary 

spectral estimation are well developed, i.e., the 

short-time Fourier transform, complex demodu­

lation, and several transformations leading to 

time-frequency representations, the most import­

ant being the Wigner Distribution [1], The 

short-time Fourier transform approach is certainly 

the most popular one. However, short-time analy­

ses are known to suffer various drawbacks, es­

pecially with respect to the quasi-stationary 

assumptions. On the other hand, one may look for 

a better time-frequency representation : a recent 

series of papers has shown that the Wigner-Ville 
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Distribution and the windowed Wigner Distri­

bution, known as the psuedo Wigner Distribution, 

are good candidates with their well-understood 

mathematical properties. The Wigner Distribution 

procedure offers better resolution in time or fre­

quency than the short-time Fourier transform ap­

proach. The defects of the Wigner Distribution 

approach for multicomponent signals include the 

possible generation of negative-going regions in 

the time-frequency plane and the creation of 

cross-terms. In most practical situations, it is ne- 

necessary to apply some sort of smoothing in the 

time and frequency domains in order to suppress 

the negative regions and cross-terms. However, 

such a smoothing process results in the loss of 

some time and frequency resolution of the Wigner 

Distribution procedure.

Recently developed parametric approaches are 

representations of nonstationary signals by 

time-dependent auto-regressive (AR) modelling 

described in [2]. The AR coefficients are allowed 

to change in time by a linear combination of a 

some set of known time functions. These para­

metric approaches offer the advantage of leading 

to the same type of identification procedures as 

AR models with constant parameters. However, 

further work is needed to develop a systematic 

procedure for designing the best basis functions 

for specific classes of nonstationary signals since 

a given basis set is by no means the best one for 

all nonstationary signals.

In contrast to existing parametric approachs, 

we propose another auto-regressive (AR) para­

metric method for the spectral estimation of 

nonstationary signals using recursive least square 

algorithm with a variable forgetting factor 

(RLS-VVF), The concept of variable forgetting 

factor was introduced in self-tuning control to 

avoid a “blowing-up” of the covariance matrix of 

the estimates and subsequent unstable control 

[3], A similar scheme has been used in the 

techniques of adaptive filtering [4] and 

time-varying spectral estimation [5]. A different 

adaptation scheme [6] has been proposed by 

varying the memory length. The method de­

scribed in the paper can quickly estimate the glo­

bal trend in a nonstationary situation by 

decreasing the forgetting factor. This is auto­

matically accomplished via an extended error cri­

terion :i.e., when the signal exhibits stationary- 

ity, the actual memory length is increased by in­

creasing the forgetting factor. This results in a 

frequency estimation of the signal with high ac­

curacy.

In this paper, the RLS-VFF method is applied 

to the spectral estimation of a spatially 

nonstationary signal associated with the tran­

sition to turbulence in mixing layers [7]. In 

constrast to the classical method, which requires 

one to estimate the spectrum for each location by 

repeating the same experiment, the proposed 

method enables one to estimate downstream 

power spectra over the section of interest with a 

single data set obtained by slowly moving a probe 

downstream. Then, the downstream power spec­

tra of a spatially nonstationary signal obtained 

from the moving probe are estimated efficiently 

via the variable forgetting factor scheme which 

“forgets” old data (or weights recent data) to a 

degree depending on an automatically-calculat­

ed measure of nonstationarity (the extended pre­

diction error criterion). The performance of the 

RLS-VFF is compared to that of the RLS algor­

ithm with a fixed forgetting factor (RLS-FFF). 

Also, the downstream spectra calculated using 

the movable probe and the RLS-VFF method are 

compared to classical spectra calculated from 

fixed probes.

II. Adaptive Power Spectral Estimation with a 
Variable Forgetting Factor

Since the proposed approach to estimate power 

spectra of nonstationary signals is based on the 

AR method with the recursive least squares 

(RLS) algorithm which is a sequential algorithm 

for adaptive AR parameter estimation, we will 

briefly summarize the RLS algorithm [8] in the 

following. Consider a class of nonstationary 

signals y(n) defined by the following recursive 
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equation :

p
y{n) — at(n)y(n^i)-he(n) (1)

i=i

where eM is a zero-mean white noise with 

variance 砰， and 03),z'=l，…，力} are 

time-varying parameters. The power spectral 

density Sy(w;n) at time n is given by

Q / 、 乃__________ (2)
s)= 一[讦£溢■布)厂戸|2

where T denotes the sampling interval. The sum 

of the prediction errors is defined by

e(e)=£ 泌一이e(D|2 (3)

where

e(k) =y(k} —\p(k — l)0p(n)

Y?鳳)=—1), - - p©—力+1)卩

0^(n) = [ai(n),a2(n), …,吻(시 卩、

In order to update the set of AR parameters that 

minimize the exponentially weighted squared er­

ror, an RLS algorithm with a forgetting factor X 

(0〈人Ml), which permits tracking of slowly 

varying signal parameters, is used.

—1) + K^(n)e(n) (4)

where

Y( \ _ P(w —l)Y/,(w) 

x+Y?n)P(n-l)Y/n)

P(n) =*  [P(w-l)-K/n)Y；(n) P(n-l)]

(5)

(6)

Also, the weighted sum of the squares of the re­

sidual error can be expressed recursively as

e(M)—1) + [1 —]^2(n) (7)

Now we introduce the variable forgetting fac­

tor concept to estimate time-varying spectra of 

nonstationary signals. Traditionally, the recursive 

least squares method with fixed forgetting factor 

is used to estimate time-varying spectra by 

assigning X<1. Progressively smaller values of X 

results in the AR parameters being computed 

with effectively smaller windows of data which 

are beneficial in nonstationary situations. How­

ever, if a signal is composed of subsignals with 

different degrees of nonstationarity, it would not 

be optimal to estimate the AR parameters with 

the same fixed value of A<1. In order to deter­

mine the value of the variable forgetting factor 

to be used in calculating the next AR parameters, 

error sources are examined. The first error arises 

from finite data, called estimation error. This er­

ror has zero bias and a variance which decreases 

with data length. There also is error caused by 

nonstationarity. The variance of this error 

increases with data length and can be minimized 

by rapidly discounting the past and basing 

estimates predominantly on the most recent data. 

The other source for the error is noise, eg, 

measurement noise. Then, the extended predic­

tion error, which estimates the degree of the 

nonstationarity of the signal, is defined by

<?(")=淀，(”T) (8)

where an appropriate averaging (M) is introduced 

to minimize the effect of a spurious large additive 

noise error, since the error coming from the 

noise, e.g., measurement noise, is a random pro­

cess. However, M should be a small number so 

that the averaging does not obscure the 

nonstationarity of the signal. M is also used to 

cancel out the periodicity of the error since the 

prediction error, which is the difference between 

the signal and model output, may have period­

icity if the signal under consideration is periodic.

A useful figure to determine the speed of adap­

tation is the asymptotic memory length N given 

by

x 1n=£?，=7I^) (9) 
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which implies that the information dies away 

with N memory length. A strategy for choosing 

the forgetting factor is defined by

51-紗 (10)

where 屛 is the expected noise variance. The 

maximum asymptotic memory length (Nmax) will 

govern the speed of adaptation. Note that the 

value of the variable forgetting factor in (10) will 

become close to unity (A(w)=l —1 for a 

stationary process since the extended prediction 

error of a stationary process will approach the 

noise variance (see (8) and (10)). For a signal 

with a high degree of nonstationarity, a small 

value of 人(筋)will be obtained due to the high 

value of extended prediction error in (8). These 

results are quite consistent with the basic idea 

behind using different values of fixed forgetting 

factors depending on a priori information of a sig­

nal in that 人 is set close to unity if it is known 

that the signal is a stationary process, and pro­

gressively smaller values of X are used in 

nonstationary environments. However, in the 

scheme used in this paper, the variable forgetting 

factor is automatically adapted to a signal by an 

extended prediction criterion which accounts for 

the nonstationarity of the signal. Since this for­

getting factor adaptation scheme does not 

guarantee that A(n) does not become negative, it 

is best to place a reasonable lower limit on the 

forgetting factor (人枫")

The determination of the exact value of the 

parameter, Nmax, depends on a priori information 

about the nonstationary signal, which is usually 

not available in practice. Fortunately, the per­

formance of the AR method with a variable for­

getting factor is not sensitive to Nmax unless Nmax 

is too low. In most cases, spectral estimation of a 

nonstationary signal can be performed by 

assigning a value between 0.99 and 0.999 to Xm獄, 

and, thus, assigning a value between 100 and 1000 

to Nmax. The low frequency of the signal,丿而, 

which characterizes the period of the prediction 

error, can be used to determine the parameter M 

in order to cancel out the periodicity of the pre­

diction error by averaging : i.e., M = 1 /fsi.

A similar scheme used ⑶ to avoid the Hcovari­

ance wind-up” problem in self-tuning control is 

defined by

N(n) =<t2Vo /[1 —YJ(m)K/>(Z)]f2(n) (11)

The denominator in (11) corresponds to the sec­

ond term on the right-side of(7), containing new 

residual error information. This approach enables 

the parameter estimates to follow both slow and 

sudden setpoint changes in plant dynamics for 

nearly deterministic situation. However, if one is 

concerned with estimating time-varying spectra 

of nonstationary signals, the asymptotic memory 

length to be used in the calculation of the next 

value of the forgetting factor should be modified 

as in (8) and (10) in order to minimize the effect 

of a spurious large additive noise error and to 

smooth the periodicity of the residual.

HI. Experimental Results

The experiments were conducted in a low-tur­

bulence wind tunnel. A sketch of the facility is 

shown in Fig. 1. The contraction section is 

separated into two parts by a splitter plate. The 

dimensions of the test section are 30x20x150 

cm. The tunnel is instrumented with a Disa 

56C /N hot-wire anemometry system. Real-time 

signal analysis and initial checks of the running 

conditions were performed using an HP3562A 

spectrum analyzer. The hot-wire signals are 

processed by a twelve-channel, twelve-bit, CAM- 

AC system. This system is controlled by an IBM 

PC AT computer. Data analysis was performed 

on a VAX Station 3500.

The mixing layer is formed by the merging of 

the flows on either side of the splitter plate. The 

high speed stream, U、is 7.17 m /sec and the low 

speed stream, U2, is 1.51 m/sec. This results in a 

v이ocity differential = 02 = 5.66 m/sec

and a velocity ratio R=(U】T*)/ (〔方+U)=0.652.
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Screens, Foam and 
Perforated Plates

Sdlltng Chambers and
Contraction Zone

Fig 1 Schematic diagram of the wind tunnel apparatus.
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Fig 2JJower spectra of velocity-fluctuations at 8 selected downstream locations from

Rx //o = 1.0 to 3, (solid line : estimated spectrum, dotted 1: reference spectrum.)

652. The measured initial wavelength of the most 

fundamental instability mode, Zo, is 1.98 cm. This 

value will be used as a reference length scale. 

The free-stream turbulence intensity in the vicin­

ity of the trailing edge of the splitter plate is 0. 

0005 AU in the low speed stream. Most of this in­

tensity is concentrated in the lower frequencies. 

The data obtained by moving the probe in the 

downstream direction from _ZG/Z)= 0.66(i.e.,x=2 

cm) to 3.3 (ie,%=10 cm) at a constant velocity, 

Uprobe = 2 cm /sec, are nonstationary since the 

spectrum changes as we proceed downstream. 

Measurements of velocity-fluctuations are digitiz­

ed for 4 seconds with a sampling interval of 1 

msec. The spectra of the velocity-fluctuations at 

8 different but fixed locations along the x-axis 

and at across-stream location where 伽'「ms is a 

maximum were estimated beforehand using 4,096 

samples each and used as a reference for compari­

son purposes (e.g., dotted line in Fig.2).

The RLS-VFF approach described in Section 2 

has been applied to the spectral estimation of a 

spatially nonstationary signal in wind tunnel 

tests. In order to properly apply the spectral esti­
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mation method of nonstationary signals to a data 

set obtained by moving a probe, one needs to sel­

ect several parameters.

First, one needs to select the order, p, of the 

RLS-VFF model. Even though it is difficult to 

suggest the accurate choice of model order p 

Miich gives the best fit, there are a few guidelines 

available for model order selection. When a signal 

is not perturbed by noise, the theoretical model 

order p must be twice the number of sinusoids. 

When the signal is perturbed by an additive 

noise, the model order p must be increased to 

have additional poles available to represent the 

noise. However, too high a guess for model order 

introduces spurious detail into the spectrum. 

Since the largest for model order introdus detail 

into the spectrum.

Since the largest possible number of sinusoids 

for the signal in our experiment is 7 (see the case 

of Rx/*=3.3  in Fig.2) and the signal is perturbed 

by an additive noise, the model order for this sig­

nal is set equal to 20.

An a priori knowledge of the degree of nonsta- 

tionarity of the signal beforehand is unrealistic. 

Hence, the maximum 人次* = 0.999 and minimum 

入m = 0.75 are selected and the variable forget­

ting factor X(w) is allowed to change between 

these limits. Thus, a maximum asymptotic mem­

ory length Nmax = 1 /kmax —1000, given by (9), is 

used in our experiments. The largest spectral 

peak occuring at about 200 Hz(period = 5 msec) is 

used to deterimine the parameter M = 5 in order 

to cancel out the periodicity of the prediction er­

ror by averaging (note that the period of the sig­

nal is 5 msec and the sampling interval is 1 msec). 

M is also used to average the noise error in order 

to prevent a large spurious noise error from mis­

leading the next calculation of the variable for­

getting factor. However, the average number M 

=5 is small compared with Nmax = 1000 so as not 

to obscure the nonstationarity nature of the sig­

nal.

in Fig. 2 spectra estimated using the RLS-VFF 

method on nonstationary moving probe data 

(solid line) and reference spectra obtained by

Fig 3 Downstream power spectra of velocity- 

flucfwations in wind tunnel estimated by recur­

sive least squares algorithm with a variable for­

getting factor. The spatial resolution is Rx /lo = 

0.054 or 0.16 cm. The frequency resolution is 国 

-500/32 = 15.625 Hz.

classical methods from measurements with fixed 

probes (dotted line) at selected downstream 

locations are shown. The estimated spectra show 

relatively good agreement with the reference 

spectra, especially at the peaks. However, the 

agreement is often not as good in the valleys 

(which are typically 20 to 30 dB's b이ow the 

peaks) where signal to noise ratio (SNR) is low. 

The lack of agreement is due to the fact that in 

the moving probe approach only a single data set 

is used to estimate downstream power spectra 

over the section of interest, whereas in the fixed 

probe approach a large number of ensemble 

averages can be carried out to estimate an accu- 

rate power spectrum, even in the valleys.

The downstream evolution of power spectra 

estimated using the RLS-VFF moving probe ap- 

proach is shown in Fig. 3. This figure is obtained 

by plotting every 80th power spectrum out of the 

4000 total power spectra, resulting in a 3-dimen- 

*sional plot with a 50 point Rx /k scale. In physical 

coordinates, this is equivalent to spectra measur­

ed every 0.16cm, as the probe moves along. Thus, 



Spectral Estimation of Nonstationary Signals Using RLS Algorithm with a Variable Forgetting Factor 63

the combination of variable forgetting factor, and 

a moving probe can yield very closely spaced 

power spectra, a representation that can be ex­

tremely powerful in visualizing the changing 

spectral dynamics associated the downstream 

evolution of the flow. In order to estimate the 

downstream power spectra with the same spatial 

resolution using the fixed probe approach, one 

would have to repeat the same experiment 50 

times, which is often a tedious and time-consum­

ing job.

It is important to note here that the spatial 

evolution of the power spectra measured with a 

moving probe and the RLS-VFF method agree 

with results in [9] obtained using fixed probes 

and FFT techniques to estimate the power 

spectra in the same facility under identical exper­

imental conditions. For example, an examination 

of Figs. 2 and 3 indicates that the initial region of 

the transition (0.6<7?^//o<2,O) is characterized 

by a large peak at the fundamental frequency 

(215 Hz) as predicted by hydrodynamic linear 

stability analysis. Another peak at the subhar­

monic frequency (107.5 Hz) is also noticed.. As we 

progress further downstream, we notice a 

strengthening of the peak at the subharmonic

Table 1 Normalized mean square errors between 

the reference spectra and estimated 

spectra at selected downstream locations 

using recursive least squares algorithm 

with (a) fixed forgetting factor (FFF) 

(b) variable forgetting factor (VFF)

Rx/l0

FFF
1.0 1.3 1.6 2.0 2.3 2.6 3.0 3.3

1.00 0.66 0.24 0.20 0.82 1.3 2.2 1.3 0.41

0.99 0.53 0.24 0.72 0.61 0.20 0.41 0.35 0.19

0.98 0.53 0,24 0.72 0.61 0,20 0.41 0.35 0.19

0,98 1.9 0.67 2.3 1.3 0.39 0.84 2.1 0.21

0.97 49 1.9 3.9 1.3 0.53 1.4 92 0.39

0.96 110 4.0 5.6 1.1 0.68 2.1 160 0.94

0.95 4.9 8.3 8.0 0.94 0.82 3.1 170 2.2

(b)

VFF 0.36 0.14 0.11 0.24 0.097 0.20 0.09 0.19

frequency between Rx/1^2.0 and 2.6. Further do­

wnstream, between Rx //o^3.O and 3.3 we notice 

strengthening of 나k 3 /2 harmonic at 322.5 Hz.

Normalized mean square errors between the 

reference (fixed-probe) spectra and the 

estimated (moving-probe) spectra at selected 

downstream locations are presented in Table 1. 

The performance of our approach with a variable 

forgetting factor (VFF) are compared to those 

with fixed forgetting factor (FFF) equal to 1.00, 

0.99, 0.98, 0.97, 0.96, and 0.95. The normalized 

mean square error is defined as follows :

1《[S(m) ~S ]2 (12)

64 M s2(m)

where S(m) and S (m) are the reference and 

estimated spectrum, respectively. The normalized 

mean square error is averaged over 64 different 

frequency points (here, 64 signifies the number of 

frequencies 나p to the Nyquist frequency (500 

Hz)). The upper bound of the mean square error 

using the variable forgetting factor method is 

obtained at Rx/Iq=1.Q and is equal to 0.36. This 

value is low when compared to the values 

obtained using fixed forgetting factors. By 

examing normalized mean square errors at 

other locations, one can see that the proposed 

RLS — VFF method exhibits superior performance 

compared with typical fixed forgetting factors 

(0.95QM1).

Note that when moving the probe downstream 

to estimate power spectra of velocity-fluctuations 

one encounters fewer wave fronts per unit time 

than when counting wave fronts at a fixed probe. 

This frequency shift associated with moving 

probe is analogous to a Doppler shift. The frac­

tional difference between the frequency measur­

ed by moving the probe and the one by a fixed 

probe is given by 鸟〃=一。”血/一U他拶.Here, 

미如괴 is the velocity of the flow, U忡而 is 나le vel­

ocity of the moving probe. The minus sign is 

required for the correct determination of appar­

ent frequency increase or decrease, depending 

upon whether the probe is moving with or against 
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the flow velocity. The fractional frequency shift 

(A/- //) occurring in this experiment is about (2 

cm /sec) /(4 m /sec) =0.5%, which is negligible. 

Thus, one needs to make sure that the probe does 

not move too fast (compared to the velocity of 

the flow so as not to create a large amount of fre­

quency shift.

IV. Con이usi(기!

Traditionally, the downstream evolution of 

power spectra of velocity-fluctuations in a wind 

tunnel are determined by measuring data at each 

poing of interest to estimate the spectrum for 

that point. In this paper, a new AR method of es­

timating power spectra of nonstationary signals is 

presented using variable forgetting factors which are 

adapted to the signals via the criterion of an ex­

tended prediction error. The practicality of the 

proposed moving probe approach using variable 

forgetting factors has been demonstrated via 

spectral estimation of a spatially nonstationary 

signal associated with transition to turbulance 

studies. The variable forgetting factor approach 

is shown to yield statistically meaningful, high 

spatial resolution plots of the power spectra as 

the flow evolves downstream. Our results indi­

cate that the variable forgetting factor method 

exhibited better performance (in terms of mean 

square errors) in our experiments than typical 

fixed forgetting factor methods.
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