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Spectral Estimation of Nonstationary Signals Using RLS
Algorithm with a Variable Forgetting Factor
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ABSTRACT

This paper presents a new adaptive method of estimating power spectra which vary spatially (iLe., are spatially
nonstationary}. This method estimates downstream power spectra from a single data set obtained by slowly moving
a probe over the spatial region of interest. The concept of a variable forgetting factor, which compensates for the
nonstationarity of a signal by forgetting “old™ upstream data, is developed and incorporated into the recursive least
square (RLS) algorithm to estimate power spectra of spatially nonstationary signals obtained from a moving probe.
‘The feasibility and practicality of the moving probe approach is applied to the spectral estimation of a spatially
nonstationary signal encountered in transition to turbulence studies conducted in a small wind tunnel, The resulting

spectra compare very well with spectra estimated via the traditional approach, i.e..the fixed probe approach.
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1. Introduction short-time Founer transform, complex demodu-

lation, and several transformations leading to

Spectral analysis, a powerful tool in time series time-frequency representations, the most import-
analysis, has proven to be very useful in the ant being the Wigner Distribution [1], The
study of acoustis, speech, communications, radar, short-time Fourier transform approach is certainly
sonar, ultrasonics. biology, biomedicine, optics, the most popular one. However, short-time analy-
etc. Nonparametric methods for nonstationary ses are known to suffer various drawbacks, es-
spectral estimation are well developed, i.e., the pecially with respect to the quasi-stationary

vzer) et M e assumptions. On the other hand, one may look for

I[}epartn}ent of Electronics Engineering, Chung- Ang a better time-frequency representation :a recent
niversity

442l 4} - 1992, 10, 17. series of papers has shown that the Wigner-Ville
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Distribution and the windowed Wigner Distri-
bution, known as the psuedo Wigner Distribution,
are good candidates with their well-understood
mathematical properties. The Wigner Distribution
procequre offers better resolution in time or fre-
quency than the short-time Fourier transform ap-
proach. The defects of the Wigner Distribution
approach for multicompenent signals include the
possible generation of negative-going regions in
the time-frequency plane and the creation of
cross-terms. In most practical situations, it is ne-
necessary to apply some sort of smoothing in the
time and frequency domains in order to suppress
the negative regions and cross-terms. However,
such a smoothing process results in the loss of
some time and frequency resolution of the Wigner
Distribution procedure.

Recently developed parametric approaches are
representations of nonstationary signals by
time-dependent auto-regressive {AR) modelling
described in [2). The AR coefficients are allowed
to change in time by a linear combination of a
some set of known time functions. These para-
metric approaches offer the advantage of leading
to the same type of identification procedures as
AR models with constant parameters, However,
further work is needed to develop a systematic
procedure for designing the best basis functions
for specific classes of nonstationary signals since
a given basis set_is by no means the best one for
all nonstationary signals,

In contrast to existing parametric approachs,
we propose another auto-regressive (AR) para-
metric method for the spectral estimation of
nonstationary signals using recursive least square
algorithm with a variable forgetting factor
(RLS-VVF), The concept of variable forgetting
factor was introduced in self-tuning control to
avotd a “blowing-up” of the covariance matrix of
the estirmates and subsequent unstable control
[3]. A similar scheme has been used in the
techniques of adaptive filtering (4] and
time-varying spectral estimation [5]. A different
adaptation scheme .[6] has been proposed by
varying the memory length. The method de-

scribed in the paper can quickly estimate the glo-
bal trend in a nonstationary situation by
decreasing the forgetting factor. This is auto-
matically accomplished via an extended error cri-
terion :i.e,, when the signal exhibits stationary-
ity, the actual memory length 1s increased by in-
creasing the forgetting factor. This results in a
frequency estimation of the signal with high ac-
curacy,

In this paper, the RLS-VFF method is applied
to the spectral estimation of a spatially
nonstationary signal associated with the tran-
sition to turbulence in mixing layers [7]. In
constrast to the classical method, which requires
one to estimate the spectrum for each location by
repeating the same experiment, the proposed
method enables one to estimate downstream
power spectra over the section of interest with a
single data set obtained by slowly moving a probe
downstream. Then, the downstream power spec-
tra of a spatially nonstationary signal obtained
from the moving probe are estimated efficiently
via the variable forgetting factor scheme which
“forgets” old data (or weights recent data) to a
degree depending on an automatically-calculat-
ed measure of nonstationarity {the extended pre-
diction error criterion}. The performance of the
RLS-VFF is compared to that of the RLS algor-
ithm with a fixed forgetting factor (RLS-FFF),
Also, the downstream spectra calculated using
the movable probe and the RLS-VFF method are
compared to classical spectra calculated from
fixed probes,

l. Adaptive Power Spectral Estimation with a
Variable Forgetting Factor

Since the proposed approach to estimate power
spectra of nonstationary signals is based on the
AR method with the recursive least squares
{RLS) algorithm which is a sequential algorithm
for adaptive AR parameter estimation, we will
briefly summarize the RLS algorithm [8] in the
following. Consider a class of nonstationary
signals v(») defined by the following recursive
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equation :

y(n)=—i aln)y(n—1)+eln) (1)

where e{n) is a zero-mean white noise with
variance ¢4 and la(n)icle--p) are
time-varying parameters. The power spectral

density Su(w, n) at time » is given by

ot (2)
THTr s adn)e mo |2

Selw, 0} =

where T denotes the sampling interval, The sum
of Lthe prediction errors is defined by

eln) =T A hle(r) |2 (3)

L
where

elk) =x{£) = Y[ (4= 118 (n}
Yolk) = (v ylk=1), - yla—p+1)JT
Op(n) = Lmln),axln), - ',a,,(n)_lr

In order to update the set of AR parameters that
minimize the exponentially weighted squared er-
ror, an RLS algorithm with a forgetting factor A
(0<a<1), which permits tracking of slowly
varying signal parameters, is used.

@pi{n)=0p(n—1}+ Kp(n)e(n) (4)

where

_ Bz DYe) .
AFY P (n—1)Ypin) )
P(n) == [P(— 1=K Yim) Pr—D]  (6)

Kp(?l) =

Also, the weighted sum of the squares of the re-

sidual error can be expressed recursively as

eln} =2rs(n—1) + (1= YXn)Kp(n) Je3(n) (7)

Now we introduce the variabie forgetting fac-

tor concept to estimate time-varying spectra of
nonstationary signals., Traditionally, the recursive

least squares method with fixed forgetting factor
is used to estunate time-varying spectra by
assigning A< 1. Progressively smaller values of A
results in the AR parameters being computed
with effectively smaller windows of data which
are beneficial in nonstationary situations, How-
ever, if a signal Is composed of subsignals with
different degrees of nonstationarity, it would not
be optimal to estimate the AR parameters with
the same fixed value of A<1, In order to deter-
mine the value of the vanable forgetting factor
to be used in calculating the next AR parameters,
error sources are examined. The first error arises
from finite data, called estimation error, This er-
ror has zero bias and a variance which decreases
with data length. There also is error caused by
nonstationarity. The variance o©of this error
increases with data length and can be minimized
by rapidly discounting the past and basing
estimates predominantly on the most recent data,
The other source for the ertor 1s noise, e.g.,
measurement noise. Then, the extended predic-
tion error, which estimates the degree of the
nonstatioparity of the signal, is defined by

v ol

Qln) '1];: An—1) (8)

where an appropriate averaging (M) is introduced
to minimize the effect of a spurious large additive
noise error, since the error coming from the
noise, €.g., Mmeasurement noise, is a random pro-
cess. However, M should be a small number so
that the averaging does not obscure the
nonstationarity of the signal. Af is also used to
cancel out the periodicity of the error since the
prediction error, which i1s the difference between
the signal and model output, may have period-
icity if the signal under consideration is periodic,

A useful figure to determine the speed of adap-
tation is the asymptotic memory length N given
by

v a1k o
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which implies that the information dies away
with VN memory length, A strategy for choosing
the forgetting factor is defined by

=1 42 10
where o is the expected noise variance, The
maximum asymptotic memory length (Nmax) will
govern the speed of adaptation. Note that the
value of the variable forgetting factor in (13) will
become close to unity (A(s#)=1~-1/Nm) for a
stationary process since the extended prediction
error of a stationary process will approach the
noise variance (see (8) and (10)). For a signal
with a high degree of nonstationarity, a small
value of A(») will be obtained due to the high
value of extended prediction error in {8). These
results are quite consistent with the basic idea
behind using different values of fixed forgetting
factors depending on 4 priori information of a sig-
nal in that A is set close to unity if it 15 known
that the signal is a stationary process, and pro-
gressively smaller values of A are used In
nonstationary environments, However, in the
scheme used in this paper, the varnable forgetting
factor is automatically adapted to a signal by an
extended prediction criterion which accounts for
the nonstationarity of the signal. Since this for-
getting factor adaptation scheme does not
guarantee that A(x#) does not hecome negative, it
is best to place a reasonable lower limit on the
forgetting factor (Amm).

The determination of the exact value of the
parameter, Nmax, depends on « priori information
about the nonstationary signal, which is usually
not available in practice, Fortunately, the per-
formance of the AR method with a variable for-
getting factor is not sensitive to Nmax unless Nmax
is too low, ln most cases, spectral estimation of a
nonstationary signal can be performed by
assigning a value between 0.99 and 0,999 L0 Amanx,
and, thus, assigning a value between 100 and 1000
to AMmax. The low frequency of the signal, fa,
which characterizes the period of the prediction

error, can be used to determine the parameter 3

in order to cancel out the periodicity of the pre.
diction error by averaging ;i.e., M=1/fu.

A similar scheme used [3] to avoid the “covari-
ance wind-up” problem in self-tuning control is
defined by

N} =o2Na /11— Y5 Kple) Jef(n) (1)

The denominator in {11} corresponds to the sec-
ond term on the right-side of (7), containing new
residual error information, This approach enables
the parameter estimates to follow both slow and
sudden setpoint changes in plant dynamics for
nearly deterministic situation, However, if one is
concerned with estimating time-varying spectra
of nonstaticnary signals, the asymptotic memory
length to be used in the calculation of the next
value of the forgetting factor should be modified
as in (8) and (10) in order to minimize the effect
of a spurious large additive noise error and to
smooth the periodicity of the residual.

Il. Experimental Results

The experiments were conducted in a low-tur-
bulence wind Lunnel. A sketch of the facility is
shown: in Fig. 1, The contraction section is
separated into two parts by a splitter plate. The
dimensions of the test section are 30x20X150
cm, The tunnel is instrumented with a Disa
56C /N hot-wire anemometry system. Real-time
signal analysis and initial checks of the running
conditions were performmed using an HP3562A
spectrum analyzer. The hot wire signals are
pracessed by a twelve-channel, twelve-bit, CAM-
AC system, This system is controlled by an IBM
PC AT computer. Data analysis was performed
on a2 VAX Station 3500.

The mixing layer is formed by the merging of
the flows on either side of the splitter plate, The
high speed stream, {41, is 7.17 m /sec and the low
speed stream, {%, is 1.51 m /sec. This results in a
velocity differential AV=U,—L",=05.66 m/sec
and a velocity ratio R==([", 1) /{{/\+17)) =0.652.



60

[Relative scale)

[Relative scale]

The Journal of the Acoustical Society of Korea, Vol. 12, No,LE (1943)

Screens, Foam and
Pcrfosaied Plates

Probe
Resonating Filters
U,
Splitter Plate — g 4 y
< b3
- N~— )
U, X
Sonic Throat

Siilling Chambers and Test Section and Exit Contraction Pump
Conwaction Zone

Fig | Schematic diagram of the wind tunnel apparatus.
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Fig 2 _Pf)ﬂe(__sgef:t__ra of velocity-tluctuations at 8 selected downstream locations from
Ry /th=1.0to 3 (solid line : estimated spectrum, dotted | :reference spectrum,)

652. The measured initial wavelength of the most
fundamental instability mode, &, is 1.98 cm. This
value will be used as a reference length scale.
The free-stream turbulence intensity in the vicin-
ity of the trailing edge of the splitter plate is 0,
0005 AL’ in the low speed stream. Most of this in-
tensity is concentrated in the lower frequencies,
The data obtained by moving the probe in the
downstream direction from Ry /{=0.66(i.e . x=2
cm) to 3.3 {i.e.,x=10 cm) at a constant velocity,
Upmwe =2 cm /sec, are nonstationary since the
spectrum changes as we proceed downstream,

Measurements of velocity-fluctuations are digitiz-
ed for 4 seconds with a sampling interva) of 1
msec. The spectra of the velocity-fluctuations at
8 different but fixed locations along the x-axis
and at across-stream location where #'ymqs is a
maximum were estimated beforehand using 4,096
samples each and used as a reference for compari-
son purposes (e.g., dotted line in Fig, 2},

The RLS-VFF approach described in Sectjon 2
has been applied to the spectral estimation of a
spatially nonstationary signal in wind tunnel
tests, In order to properly apply the spectral esti-



62 ‘The Journal of the Acoustical Society of Korea, Vol, 12. No.1E (1993}

mation method of nonstationary signals to a data
set obtained by moving a probe, one needs to sel
ect several paramecters,

First, one needs 1o select the order, p, of the
RLS-VFF model. Even though it is difficult to
suggest the accurate choice of model order p
which gives the best fit, there are a few guidelines
available for model order selecltion. When a signal
is not perturbed by noise, the theoretical model
order p must be twice the number of sinusoids.
When the signal 15 perturbed by an additive
noise, the model order p must be increased to
have additional poles available to represent the
noise, However, too high a guess for model order
introduces spurious detail into the spectrum.
Since the largest for model order introdus detail
into the spectrum.

Since the largest possible number of sinusoids
for the signal in our experiment is 7 (see the case
of Rx /=733 in Fig.2) and the signal is perturbed
by an additive noise, the model order for this sig-
nal is set equal to 20,

An a priori knowledge of the degree of nonsta-
tionarity of the signal heforehand is unrealistic.
Hence, the maximum Amex = 0.999 and minimum
e =075 are selected and the variable forget.
ting factor A{x) is allowed to change between
these limits. Thus, & maximum asymptotic mem-
ory length Nuwas =1 /nax = 1000, given by (9}, is
used in ouwr experiments. The largest spectral
peak occuring at about 200 H:{period = 5 msec) is
used to deterimine the parameter M =5 in order
to cancel out the periodicity of the prediction er-
ror by averaging {note that the period of the sig-
nal is 5 msec and the sampling interval is 1 msec).
M is also used to average the noise error in order
to prevent a large spurious noise error from mis-
leading the next calculation of the variable for-
getting factor. However, the average number M
= 5 is small compared with New: = 10X} s0 as not
to obscure the nonstationarity nature of the sig-
nat,

In Fig. 2 spectra estimated using the RLS-VFF
method on nonstationary moving probe data

(solid line) and reference spectra obtained by

T
MR

0.8

Fig 3 Downstrearn power spectra of velocity-
flucgmations in wind tunnel estimated by recur-
sive least squares algorithm with a variable for-
getiing factor. The spatial resolution is Rx /=
0.054 or 0.16 cm. The frequency resolution is Af
=500 /32 =15.625 H=,

classical methods from measurements with fixed
probes {dotted line) at selected downstream
locations are shown. The estimated spectra show
relatively good agreement with the reference
spectra, especially at the peaks. However, the
agreement 1s often not as good in the valleys
(which are typically 20 to 30 dB’'s below the
peaks) where signal to noise ratio (SNR) is low.
The lack of agreement is due to the fact that in
the moving probe approach only a single data set
is used to estimate downstream power spectra
over the section of interest, whereas in the fixed
probe approach a large number of ensemble
averages can be carried out to estimate an accu-
rate power spectrum, even in the valleys.

The downstream evolution of power spectra
estimated using the RLS VFF moving probe ap-
proach i1s shown in Fig. 3, This figure is obtained
by plotting every g0th power spectrum out of the
4000 total power spectra, resulting in a 3-dimen-
«sional plot with a 50 point Rx /iy scale. In physical
coordinates, this is equivalent to spectra measur-
ed every 0.16cm, as the probe moves along. Thus,
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the combination of variable forgetting factor, and
a moving prabe can yield very closely spaced
power spectra, a representation that can be ex-
tremely powerful in visualizing the changing
spectral dynamics associated the downstream
evolution of the flow. In order to estimate the
downstream power spectra with the same spatial
resolution using the fixed probe approach, one
would have to repeat the same experiment 50
times, which is often a tedious and time-consum-
ng job.

It is important to note here that the spatial
evolution of the power spectra measured with a
moving probe and the RLS-VFF method agree
with results in [9] obtained using fixed probes
and FFT technigues to estimate the power
spectra in the same facility under identical exper-
imental conditions, For example, an examination
of Figs, 2 and 3 indicates that the initial region of
the transition (0.6<Rx/{<2.0) is characterized
by a large peak at the fundamental frequency
(215 H:) as predicted by hydrodynamic linear
stability analysis, Another peak at the subhar-
monic frequency {107.5 H:) is also noticed. As we
progress further downstream, we notice a
strengthening of the peak at the subharmonic

Table 1 Normalized mean square errors between
the reference spectra and estimated
spectra at selected downstream locations
using recursive least squares algorithm
with {a) fixed forgetting factor (FFF)
(b) variable forgetting factor (VFF)

Rx/ly
FFF

100 | os6| 02¢] 00] 0s2| 13] 22| 1300w
099 | 053] 024] 02| 061 c20] 0.a1] 0.35] 0.19
09 | 053} 0.24] 072] 061 0.20] 0.a1] 0.35] 0.1
008 | 1ol asr| 23] 13] 039 0se| 21[ 02
o9 | 9| 1o 39| 13|oss| 14| w0
096 | 10| 40| s6| wi] o8| 21] 160] 0.9

095 |49 |83 |80 | os| g3 [170 |22

1.0 313 |16 120 [23 126 |30 (353

(
L VFF | 0.36] 0.14] 0.11] 0.24f0.007] 0.20] 0.09] 0.19]

frequency between Rx /f, ~2.0 and 2.6. Further do-
wnstream, belween #x /{,=3.0 and 3.3 we notice
strengthening of the 3 /2 harmonic at 322.5 H..
Normalized mean square errors between the
(fixed-probe)
estimated (moving-probe) spectra at selected

reference spectra and the
downstream locations are presented in Table 1.
The performance of our approach with a variable
forgetting factor (VFF) are compared to those
with fixed forgetting factor (FFF) equal to 1.00,
0.99, 0.98, 0.97, 0.96, and 0.95. The normalized
mean square error is defined as follows :

wo [S{m)~5S T

M.%‘wé L [i—l()m) v 12
where S(m) and S (m) are the reference and
estimated spectrum, respectively. The normalized
meadn square error is averaged over 64 different
frequency points (here, 64 signifies the number of
frequencies up to the Nyquist frequency (500
H:}). The upper bound of the mean square error
using the variable forgetting factor method is
obtained at Rx /4 =1.0 and is equal to 0.36. This
value is low when compared to the values
obtained using fixed forgetting factors, By
examing normalized mean square errors at
other locations, one can see that the proposed
RLS - VFF method exhibits superior performance
compared with typical fixed forgetting factors
(0.95<a<1).

Note that when moving the probe downstream
to estimate power spectra of velocity-fluctuations
one encounters fewer wave fronts per unit time
than when counting wave fronts at a fixed probe,
This frequency shift associated with moving
probe is analogous to a Doppler shift, The frac-
tional difference between the frequency measur-
ed by moving the probe and the one by a fixed
probe is given by Af/f= —Upwre / —Upu. Here,

[ne is the velocity of the flow, Upas is the vel-
ocity of the moving probe. The minus sign is
required for the correct determination of appar-
ent frequency increase or decrease, depending
upon whether the probe is moving with or against
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the flow velocity. The fractional frequency shift

(Af /) occurring in this experiment is about (2

Thus, one needs to make sure that the probe does
not move too fast (compared to the velocity of
the flow so as not to create a large amount of fre-

quency shift.

V. Conclusion

Traditionally, the downstream evolution of
power spectra of velocity-fluctuations in a wind
tunnel are determined by measuring data at each
poing of interest to estimate the spectrum for
that point. In this paper, a new AR method of cs-
timating power spectra of nonstationary signals is
presented using variahle forgetting factors which are
adapted to the signals via the cnterion of an ex-
teixded predicticn error. The practicality of the
proposed noving probe approach using varnable
forgetting factors has been demonstrated via
spectral estimation of a spatially nonstationary
signal associated with transition to turbulance
studies. The variable forgetting factor approach
is shown to yield statistically meaningful, high
spatial resolution plots of the power spectra as
the flow evolves downstream. Our resulls indi-
cate that the variable forgetting factor method
exhibited better performance (in terms of mean
square errors) in our experiments than typical
fixed forgetting factor methods.
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