• Title/Summary/Keyword: 만곡하천

Search Result 181, Processing Time 0.043 seconds

The Evaluation of Small Scaled Stream Naturalness for Stream Channel Restoration (소하천 환경조성사업의 평가를 위한 소하천자연도 평가)

  • Ahn, Tae-Jin
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.5
    • /
    • pp.359-369
    • /
    • 2007
  • In this study the evaluation method for riverine naturalness proposed previously by other researcher has been modified to assess stream naturalness of small scaled streams. Two evaluation items have been added to the previously proposed method. That is, the modified method for evaluating naturalness of small scaled streams contains 16 evaluation items with two categories - river morphology and river environments. The three evaluation items have been improved based on the results of stream configuration and characteristics investigation. To prepare evaluation index for channel configuration of small scaled stream, 55 small scaled streams have been selected to analyze sinuosity, wavelength, etc. It has been shown that the values of sinuosity are around 1.2 and one wavelength appears approximately every 500 m in the sample streams. An equation implied diversity for width of normal flow has been proposed to add the evaluation index for diversity of channel width. The every 500 m 1,000 m along small scaled stream is also recommended through the investigation as the interval of evaluation unit. The modified method has been applied to the DangWang stream to estimate the effect of stream rectification project. It has shown that the proposed method would appropriately reflect channel morphology and environments before and after the rectification project.

Morphometrical characteristics of River Meandering (하천 사행의 계량형태학적 특성)

  • 이재우;이원환
    • Water for future
    • /
    • v.14 no.1
    • /
    • pp.39-49
    • /
    • 1981
  • The purpose of this study is to examine the meander charactericstics for the rivers in Korea..In this study, the new characteristics factors of meander are proposed, and the relationships among the factors proposed in this study and the existing factors are derived. An attempt is made to find considerable relation among meander characteristics, but width and meander belt did not show any defined trend and considerable scatter of points was observed. Relationships among the meander length, belt and flowrate, etc., which are factors of meander characteristics, are analyzed the 67 rivers above 30km in length. Channel shape factor which is the ratio of the length from the starting point to the end to the channel lenght, tortuosity which is the ratio of the curved channel length against the channel length are suggested for a new characteristics factor of meander. They are well correlated with channel length, Horton's shape facotr and meander gradient, consequently have to be important measures of river meander. The result of the detailed comparison and the analysis of degree of sinuosity, velocity and water surface slop are brought light on the fact show that the curved reach is morestable than the straight one. The ratio of the meander length to the meander belt and its accumulative frequency showed excellent correlationship when plotted on the semi-log paper. The results of regression analysis of meander belt and meander length show linear for the South Han river branches and power curve for the Geum river and the Nakdong river branches.

  • PDF

Evolution of Velocity Distribution due to Secondary Currents in Sharp Open Channel Bend (급변곡선수로에서 이차류에 의한 유속분포 변화)

  • Kim Tae Won;Park Jae Hyeon;Lee Kil Seong;Lim Chang Hwa
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.362-366
    • /
    • 2005
  • 종방향 유속의 연직분포 흐름 특성을 파악하기 위해서 중심각이 $180^{\circ}$인 급변곡선수로에서 실험을 수행하였다. 3차원 유속장 측정은 side-looking ADV를 이용하였다. 실험결과, 흐름이 하류 방향으로 진행함에 따라서 최대 종방향 유속이 하상 근처에서 발생하였으며, 이차류에 의한 이송모멘텀의 분포 값이 바뀌는 단면에서 종방향 유속의 연직분포가 대수분포를 만족하지 않음을 파악하였다 직선하천과는 달리 만곡부 내에서 흐름이 하류방향으로 진행함에 따라서 종방향 유속의 연직분포가 변형되는 현상과 관련된 메카니즘은 지형학적 원인에 의한 원심력 작용은 이차류를 발생시키며, 이로 인해 이송 모멘텀이 종방향 유속의 연직분포를 변형시킨다.

  • PDF

Analysis of Channel Changes in Mountain Streams Due to Typhoon Hinnamnor Flood - A Case Study on Shingwangcheon and Naengcheon Streams in Pohang - (태풍 힌남노 홍수로 인한 산지 중소하천의 하도 변화 분석 - 포항 신광천 및 냉천을 사례로 -)

  • Chanjoo Lee;Seong Gi An;Eun-Kyung Jang
    • Ecology and Resilient Infrastructure
    • /
    • v.10 no.4
    • /
    • pp.97-106
    • /
    • 2023
  • This study analyzed morphological changes in the Singwangcheon and Naengcheon streams in Pohang caused by flooding due to Typhoon Hinnamnor. Analysis of the changes in river channel area from the past to recent times using aerial photos and drone-taken images showed that the river width had gradually decreased since the 1960s. However, after the flood, the river width increased again. Changes in the river cross-section before and after the flood show that a large amount of coarse sediment was deposited inside the river bend while the outer bank was eroded. The water levels calculated using HEC-RAS for the pre-flood cross-section based on the flood frequency discharges and estimated discharge from Oer Reservoir were significantly lower than the observed water level, which means that the cross-sectional change was not considered. The results of this study suggest that it is necessary to consider cross-sectional changes due to sediment transport when estimating the flood level of small and medium-sized mountain streams, and it is needed to investigate the geomorphic changes after floods.

The Study for Reduction Effect of Riverbed Scour due to Shape of Vanes (베인 형태에 따른 하상세굴 저감 효과에 관한 연구)

  • Hae Min Noh;Ho Jin Lee;Sung Duk Kim
    • Journal of Korean Society of Disaster and Security
    • /
    • v.16 no.2
    • /
    • pp.57-63
    • /
    • 2023
  • Recently, Heavy rains and super typhoons occurred by climate change cause a lot of damage in Korea. In order to reduce such damage, various types of river maintenance projects are being promoted, but it is difficult to maintain the balance of rivers in Korea with distinct flood and dry seasons. In particular, river structures installed as a river maintenance project cause various problems such as scouring of structures and their foundations during floods and river bed changes. In order to reduce such bed scour, various vanes are installed in the bend of the river, and various bed scour reduction effects appear depending on the size, arrangement, and shape of the vanes. The vane regenerates the secondary flow in the opposite direction to the secondary flow generated by the centrifugal force, thereby reducing scour around the outer bed and promoting deposition. The theory of this study uses the governing equation applying the continuity equation that satisfies the law of conservation of mass and the momentum equation that satisfies the conservation of momentum, and measures the overall average flow velocity change rate according to design factors to investigate the effect of vanes under various conditions. Both the average and cross-sectional flow velocities decreased in both the trapezoidal vane and the square vane. In addition, vanes installed perpendicularly or inclined to the direction of river flow generate a secondary flow in the opposite direction to the secondary flow generated by centrifugal force, thereby canceling the secondary flow of centrifugal force, so the effect of the vane appears.

A Study on Transverse Bed Slope in Channel Bends (유로만곡부의 횡방향 하상경사에 관한 연구)

  • Chung, Yong Tai;Choi, In Ho;Song, Jai Woo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.1
    • /
    • pp.143-150
    • /
    • 1994
  • When the transverse bed slope ($S_t$) in channel bend is more than 0.1, it may produce undesirable results on the bed topography of the cross section. The linear relationship for $S_t$ results in zero or negative flow depths at the shallow $S_t$de of the cross section (i.e., inner bank). The exponential relationship for $S_t$ results in excessive flow depths at the deep side of the cross section (i.e., outer bank). This problem can be solved by combining the best features of both relationships described above. From the study, the linear relationship can be applied for the deep $S_t$de of the cross section. But the exponential relationship is suitable for the shallow side. Therefore, the new relationship of $S_t$ is clarified mathematically. A new mathematical model for bed topography is developed herein which takes accounts of the phase lag and the influence of the width to depth ratio. This model is used to analyze two sets of data: one from laboratory channel and the other from natural channel. A good agreement is found between the observed and the calculated bed topography based on the analysis of two sets of data.

  • PDF

Analysis of Shallow Water Flow in Curved Channel Using Dispersion Stresses Method (분산응력법을 이용한 곡선수로에서의 천수흐름 해석)

  • Song, Chang Geun;Seo, Il Won;Kim, Tae Won;Ahn, Jungkyu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.5
    • /
    • pp.1785-1795
    • /
    • 2013
  • Most of the previous models for analysis of shallow water flow assumed the uniform velocity distributions over the flow depth so that they produced incorrect velocity prediction at meandering part due to the ignorance of secondary current. In this study, the vertical velocity profiles in longitudinal and transverse direction were decomposed as the mean and variation components, which resulted in additional dispersion stresses terms in momentum equations. The proposed model were applied at the channels with $30^{\circ}$, $90^{\circ}$, $270^{\circ}$ bends, and shallow water flow in curved channel was analyzed using dispersion stresses. The dispersion stresses acted as a sink or source in the momentum equations, which caused the transverse convection of momentum to shift from the inner bank to the outer bank.

Changes in Channel Geomorphology and Hydraulics by Submerged Spur Dikes at a Channelized Stream (정비된 하천에서 저수 수제에 의한 하도 지형과 수리 특성 변화)

  • Kim, Kiheung;Lee, Hyeongrae;Jung, Heareyn
    • Ecology and Resilient Infrastructure
    • /
    • v.2 no.1
    • /
    • pp.42-53
    • /
    • 2015
  • In order to assess the hydraulic effects of flow pattern changes and geomorphological evolution around spur dikes, this study carried out monitoring and numerical simulation on the changes of morphologic characteristics around spur dikes that settled in the bend of the Yeongcheon River. The study site spanned 190 m, and spur dikes were installed in March 2008. Monitoring of the site started in May 2008 and was completed in April 2014. When the water level was higher than the height of the spur dikes, the spur dikes extrude flow from the bank. Therefore, the spur dikes that were built to stabilize the channel have been effectively performing hydraulic functions. With the passing of time, the channel was stabilized and pools formed around the spur dike toes by local scouring. It was confirmed that spur dikes created various physical characteristics in the aspect of channel topography, with sediments deposits occurring between the spur dikes, while riffles and pools formed in the channel.

Analysis for Difference of Water Surface Elevation at Cross Section in Pyungchang River Contained Junction Using Hydraulic Model (수리모형을 이용한 평창강 합류구간의 횡단면 수위차 분석)

  • Kim, Gee-Hyoung;Choi, Gye-Woon
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.6 no.4 s.23
    • /
    • pp.57-65
    • /
    • 2006
  • In this study, hydraulic model same as natural channel with junction area and curved reach is constructed, and after that the variation of difference of the water surface elevation at cross section in junction area is analyzed using constructed hydraulic model. In junction area, the variation of maximum water level based on downstream section is more affected in discharge ratio at upstream than downstream. The maximum water level increased as closed to junction and the peak level appeared at just downstream of junction. The slope of water elevation at cross section is affected in section shape and decreased as discharge ratio is reduce. The expressed formulas developed in the channel consist of constant curvature and section shape showed difference of 60% with measured value, but the suggested formula in this study to compute difference of water surface elevation showed difference of 10% with measured value.

A Comparative Study on Hydraulic Characteristics of Curved Channel by Hydraulic Model Experiments and Numerical Analysis (수리모형과 수치해석을 통한 만곡부 하천의 수리학적 특성 비교 고찰)

  • Seo, Dong-Il;Choi, Han-Kuy
    • Journal of Industrial Technology
    • /
    • v.27 no.A
    • /
    • pp.85-94
    • /
    • 2007
  • This study, regarding curved channel, was performed to compare and analyze hydraulic characteristics and the speed of water and water level for left bank and right bank through hydraulic model experiments and numerical analysis. Real channels that had characteristics of curved channel were selected as objectives. In order to easily operate one and two dimensional numerical analysis and comparison for total 2.4Km model channel, measuring point was set up as 200m. HEC-RAS model was applied as one dimensional numerical analysis program and SMS model was used as two dimensional numerical analysis program. In respect of speed of water, the average speed of water for right bank recorded 8.33m/s in a model experiment and 3.08m/s, 8.57m/s were average speed of water for right bank in one dimensional and two dimensional numerical analysis. The average speed of water of two dimensional numerical analysis was quite similar to that of model experiments. Also, as for water level, maximum observational errors between one and two dimensional numerical analysis for right and left bank of model experiments were 0.66m, 0.84m and 0.28m, 0.48m for each. It was found that two dimensional numerical analysis had a similar result to hydraulic model experiments. Accordingly, from the result of this study, two dimensional numerical analysis should be used rather than one dimensional numerical analysis, when numerical analysis for curved channel is conducted.

  • PDF