DOI QR코드

DOI QR Code

정비된 하천에서 저수 수제에 의한 하도 지형과 수리 특성 변화

Changes in Channel Geomorphology and Hydraulics by Submerged Spur Dikes at a Channelized Stream

  • 김기흥 (경남과학기술대학교 건설환경공과대학 토목공학과) ;
  • 이형래 (경남과학기술대학교 건설환경공과대학 토목공학과) ;
  • 정혜련 (경남과학기술대학교 건설환경공과대학 토목공학과)
  • Kim, Kiheung (Department of Civil Engineering, Gyeongnam National University of Science and Technology) ;
  • Lee, Hyeongrae (Department of Civil Engineering, Gyeongnam National University of Science and Technology) ;
  • Jung, Heareyn (Department of Civil Engineering, Gyeongnam National University of Science and Technology)
  • 투고 : 2015.03.18
  • 심사 : 2015.03.25
  • 발행 : 2015.03.31

초록

수제군 주변의 유동장 및 지형학적 변화에 대한 수리학적 효과를 분석하기 위하여, 본 연구는 영천강 만곡부에 설치된 저수 수제군 주변의 하도지형 특성의 변화에 대하여 모니터링과 수치모의를 수행하였다. 연구 대상지는 연장 190m로서 2008년 3월에 저수 수제군이 설치되었다. 현장 모니터링을 2008년 5월부터 2014년 4월까지 수행하였다. 설계된 수제 높이 보다 홍수시 수위가 더 높아져도 수제는 하안으로부터 흐름을 하도의 중심으로 밀어낸다. 따라서, 만곡부의 하도 안정을 위하여 설치된 수제군은 어느 정도 효과적으로 수리적 기능을 수행하고 있다. 시간의 경과에 따라 주수로가 하도의 중심으로 이동하면서 안정되었으며, 국소세굴에 의하여 수제 선단부 주변에 소가 형성되었다. 또한, 수제 사이에는 유사가 퇴적되었고, 하도에는 여울-소가 형성됨으로써 부수적으로 수제가 하도의 지형적 측면에서 다양한 물리적 특성을 창출함을 확인하였다.

In order to assess the hydraulic effects of flow pattern changes and geomorphological evolution around spur dikes, this study carried out monitoring and numerical simulation on the changes of morphologic characteristics around spur dikes that settled in the bend of the Yeongcheon River. The study site spanned 190 m, and spur dikes were installed in March 2008. Monitoring of the site started in May 2008 and was completed in April 2014. When the water level was higher than the height of the spur dikes, the spur dikes extrude flow from the bank. Therefore, the spur dikes that were built to stabilize the channel have been effectively performing hydraulic functions. With the passing of time, the channel was stabilized and pools formed around the spur dike toes by local scouring. It was confirmed that spur dikes created various physical characteristics in the aspect of channel topography, with sediments deposits occurring between the spur dikes, while riffles and pools formed in the channel.

키워드

참고문헌

  1. Acharya, A. 2011. Experimental Study and Numerical Simulation of Flow and Sediment Transport around a Series of Spur Dikes. Ph.D. Dissertation, University of Arizona, USA.
  2. Bathurst, J.C., Thorne, C.R., and Hey, R.D. 1979. Secondary flow and shear stress at river bends. Journal of Hydraulics Division, ASCE 105: 1277-1295.
  3. Jorge, D.A., Rhoads B.L., Guneralp I., and Garcia, M.H. 2008. Flow structure at different stages in a meanderbend with bendway weirs. Journal of Hydraulic Engineering, ASCE 134: 1052-1063. https://doi.org/10.1061/(ASCE)0733-9429(2008)134:8(1052)
  4. Kang, J.G., Kim S.J., and Yeo, H.K. 2008. Experimental study on flow characteristic of L-type groyne. Journal of Korea Water Resources Association 41: 653-667. (in Korean) https://doi.org/10.3741/JKWRA.2008.41.7.653
  5. Kang, J.G., Kim, S.J., and Yeo, H.K. 2009. An experimental study on flow characteristic around inclined crest groyne. Journal of Korea Water Resources Association 42: 715-724. (in Korean) https://doi.org/10.3741/JKWRA.2009.42.9.715
  6. Kim, S.J., Kang, J.G., and Yey, H.K. 2014. An experimental study on flow characteristics for optimal spacing suggestion of $45^{\circ}$ upward groynes. Journal of Korea Water Resources Association 47: 459-468. (in Korean) https://doi.org/10.3741/JKWRA.2014.47.5.459
  7. Kim, K.H., Lee, H.R., and Jung, H.R. 2013. Effects of submerged spur dikes on the ecosystem and bed deformation in Yeongcheon river bend. Journal of the Korea Society of Environmental Restoration Technology 16: 137-153. (in Korean) https://doi.org/10.13087/kosert.2013.16.2.137
  8. Kuhnle, R.A., Alonso, C.V., and Shields, F.D. 2002. Local scour associated with angle spur dikes. Journal of Hydraulic Engineering, ASCE 128: 1087-1093. https://doi.org/10.1061/(ASCE)0733-9429(2002)128:12(1087)
  9. Marelius, F. and Sinha, S. 1998. Experimental investigation of flow past submerged vanes. Journal of Hydraulic Engineering, ASCE 124: 542-545. https://doi.org/10.1061/(ASCE)0733-9429(1998)124:5(542)
  10. Park J.K. 2011. Analysis on characteristics of flow around facilities in a river. Journal of Korea Society of Environmental Administration 17: 21-30. (in Korean)
  11. Park, J.K. 2011. Analysis on effect of sedimentation around spur dike zone in stream. Journal of Korea Society of Environmental Administration 17: 31-41. (in Korean)
  12. Park, J.K. 2011. Analysis on velocity characteristics around spur dike zone in stream. Journal of Korea Society of Environmental Administration 15: 183-192. (in Korean)
  13. NGII. 2014. www.ngii.go.kr. National Geographic Information Institute. Assessed 15 August 2014.
  14. Sukhodolov, A.N., Engelhardt, C., Kruger, A., and Bungartz, H. 2004. Case study: Turbulent flow and sediment distributions in a groyne field. Journal of Hydraulic Engineering, ASCE 130: 1-9. https://doi.org/10.1061/(ASCE)0733-9429(2004)130:1(1)
  15. Teraguchi H., Nakagawa, H., Muto, Y., Baba, Y., and Zhang, H. 2008. Effects of groins on the flow and bed deformation in non-submerged conditions. Annuals of Disaster Prevention Institute, Kyoto University 51(B): 625-631.
  16. USGS. 2009. Hydrodynamic Simulations of Physical Aquatic Habitat Availability for Pallid Sturgeon in the Lower Missouri River, at Yankton, South Dakota, Kenslers Bend, Nebraska, Little Sioux, Iowa, and Miami, Missouri, 2006-07. Scientific Investigation Report 2009-5058, United States Geological Survey, USA.
  17. Wu, W., Pingy, W., and Nobuyuki, C. 2004. Comparison of five depth-averaged 2-D turbulence models for river flows. Archives of Hydro-Engineering and Environmental Mechanics 51: 183-200.
  18. Yafei J. and Wang, S.Y. 2001. Two-Dimensional Hydrodynamic and Sediment Transport Model for Unsteady Open Channel Flow over Loose Bed. Technical Report No. NCCHE-TR-2001-1, School of Engineering, University of Mississippi University, USA.
  19. Zhang, H. and Nakagawa, H. 2008. Scour around spur dyke: Recent advanced and future researches. Annuals of Disaster Prevention Institute, Kyoto University 51(B): 633-652.
  20. Zhang, H., Nakagawa, H., Ishigaki, T., Muto, Y., and Baba, Y. 2005. Three-dimensional mathematical modeling of local scour. Journal of Applied Mechanics 8: 803-812. https://doi.org/10.2208/journalam.8.803