• Title/Summary/Keyword: 마찰 소음

Search Result 232, Processing Time 0.024 seconds

Perceptual Ques of Korean Affricate vs. Fricative Distinction (한국어 마찰음과 파찰음의 지각 단서)

  • 박순복
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1998.06c
    • /
    • pp.371-374
    • /
    • 1998
  • 본 연구의 목적은 한국어 마찰음과 파찰음을 변별적으로 지각하게 해 주는 결정적 단서를 찾아보려는 것이다. 마찰음의 마찰 소음 구간 길이를 감소시키고, 파찰음의 마찰 소음 구간 길이를 증가시키는 두 가지 실험을 통해 소음 구간의 길이 변화가 지각에 미치는 영향을 살펴 보았다. 실험 결과, 소음 구간 길이의 변화가 주된 지각적 단서임을 확인하였다.

  • PDF

An Experimental Investigation of Dry Friction Noise for Several Metallic Materials (금속 재질별 건성 마찰소음 실험적 특성 연구)

  • Baek, Jongsu;Kang, Jaeyoung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.7
    • /
    • pp.681-686
    • /
    • 2015
  • The onset characteristics of friction-induced noise for a steel plate and 4 metallic pins (Cu, Ni, Al, Mg) were studied through the pin-on-disk machine and the reciprocating testing machine. The results showed that the negative slope of the friction curve was related to the onset time of friction noise. Particularly, Cu was found to be the best metallic material for preventing squeak noise in terms of the onset time and the negative friction slope.

An Experimental Investigation of the Effect of Corrosion on Dry Friction Noise (건성마찰 소음에 대한 부식 영향도 실험연구)

  • Baek, Jongsu;Kang, Jaeyoung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.12
    • /
    • pp.1251-1256
    • /
    • 2015
  • This study investigates the friction noise characteristic in relation to the corrosion of metal by using the frictional reciprocating and pin-on-disk system. From the experiments, it is found that the corrosion of metal advances the onset time and increases the magnitude of friction noise. Further, it is observed that the effect of corrosion on friction noise stems from the alteration of tribo-surface during repetitive frictional motion. The alteration of the corrosive contact surface induces a negative friction-velocity slope, by which the corrosion of metal can generate dynamic instability faster than non-corrosion of metal.

Finite Element Analysis for Friction Noise with Respect to the Friction Curve of Several Materials (재질 별 마찰곡선을 반영한 마찰소음 유한요소 해석 연구)

  • Baek, Jongsu;Nam, Jaehyeon;Do, Hyuncheol;Kang, Jaeyoung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.5
    • /
    • pp.449-455
    • /
    • 2016
  • This study provides the finite-element (FE) squeal-model predicting friction-induced noise with respect to several friction materials that have different friction characteristics. The friction curve and the corresponding friction noise were measured for four friction materials (Cu, Ni, Al, Mg) using the pin-on-disk and reciprocating friction system. The slope of the friction curve linearized at the sliding velocity was applied to the FE model. The unstable modes in the complex eigenvalue analysis were shown to correspond to the squeal frequencies that existed in the experiment.

Analysis of stick-slip characteristics of materials used for mechanical and electronic components (기계전자 부품재료의 스틱슬립 특성 평가방법에 관한 연구)

  • Du-Seop Kim;Won-Jin Kim
    • The Journal of the Acoustical Society of Korea
    • /
    • v.43 no.3
    • /
    • pp.270-276
    • /
    • 2024
  • In this study, we analyzed the stick slip characteristics through friction experiments on materials used in mechanical and electronic products, and propose improvements to reduce abnormal noise generated inside refrigerators. To analyze the stick slip phenomenon of the materials, we fabricated a friction testing device and conducted friction experiments. Additionally, we measured the vibration and noise levels of internal components to analyze the occurrence and location of abnormal noise inside the refrigerator. By comparing the results of the refrigerator's phenomenon analysis and friction experiment, we confirm that the abnormal noise occurring inside the refrigerator is caused by the stick slip phenomenon of internal components. Finally, to propose improvements for abnormal noise reduction, we performed friction experiments using the Taguchi method and validated the performance of the proposed improvements by applying them to refrigerators.

Characteristics of Friction Noise with Respect to Friction Curve (마찰 곡선에 따른 마찰 소음 특성)

  • Nam, Jaehyun;Kang, Jaeyoung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.5
    • /
    • pp.423-430
    • /
    • 2013
  • The characteristics of friction noise due to the friction-velocity curve is experimentally investigated through the pin-on-disk setup. The rotation speed of the disk is controlled in order to produce the sliding speed variation. Then, the friction coefficient and the corresponding friction noise are simultaneously measured with respect to the sliding speed between the steel disk and aluminum pin. The experimental results show that the negative friction-velocity slope is essential in generating friction noise.

Investigation of Friction Noise with Respect to Friction Curve by Using FEM and Its Validation (마찰 곡선을 고려한 Pin-on-disk 마찰소음 해석 및 검증)

  • Nam, Jaehyun;Kang, Jaeyoung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.1
    • /
    • pp.28-34
    • /
    • 2014
  • This study provides the numerical finite-element method(FEM) estimating the friction noise induced by the negative slope in the friction-velocity curve. The friction noise due to the friction-velocity curve is experimentally investigated through the pin-on-disk setup. The measured squeal frequency is estimated by FEM. The friction curve is measured by the friction test, then it is applied to the complex eigenvalue analysis. The results shows that the experimental squeal frequency can be determined by the FEM analysis. Also, it is emphasized that the negative friction-velocity slope is essential in generating friction noise in the pin-on-disc system.

Effect of Pad Structure and Friction Material Composition on Brake Squeal Noise (제동패드의 구조와 마찰재 조성이 제동 스킬소음에 미치는 영향)

  • Goo, Byeong Choon;Kim, Jae Chul;Lee, Beom Joo;Park, Hyoung Chul;Na, Sun Joo
    • Journal of the Korean Society for Railway
    • /
    • v.20 no.1
    • /
    • pp.1-10
    • /
    • 2017
  • Brake squeal noise has been a challenging problems for a long time. It is very annoying to passengers and residents near tracks. Two methods have been applied to reduce or eliminate brake squeal noise. One is to improve frictional materials; the other is to optimize the topology and structures of brake pads. In this study, we developed two kinds of brake pads; one is a pad whose frictional material is different from the KTX brake pad friction material; the other is a flexible pad that has the same frictional material as that of the KTX brake pad, but a different structure. Squeal noise and friction coefficients were measured and analyzed using a full-scale brake dynamometer. It was found that the dynamometer test can simulate the squeal noise of KTX trains at stations. The squeal frequency of the KTX at 4500Hz was exactly reproduced; this value of 4500Hz was one of the natural frequencies of the KTX brake disc. It was also found that the squeal noise depended on the caliper pressure, initial disc temperature and braking speed. The average friction coefficient was 0.35~0.45. The new pad lowered the squeal noise by 17.3~21.6dB(A).

Friction and It's Nonlinear Compensation for Rotor Position Control (회전축계 위치제어에 대한 마찰과 비선형 보상)

  • 장용훈;최연선
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1990.10a
    • /
    • pp.157-162
    • /
    • 1990
  • 기계의 정밀도 향상을 위하여는 기계에 대한 보다 정확한 해석을 요구한다. 그러나 실제 기계 시스템은 마찰, Backlash, Saturation등과 같은 비서형 특 성을 가지고 있어 시스템의 해석 및 제어가 어렵게 된다. 특히, 축, 링크, 기 어, 풀리, 베어링등의 기계요소에서는 마찰로 인해 정밀도가 크게 덜어지고 있어, 마찰에 의한 동특성 및 제어는 많은 연구자들에 의해 관심의 대상이 되어 왔다. 마찰력을 고려한 기계시스템의 운동은 정지상태 근처에서 마찰력 의 변화가 심한 비선형 동특성을 보이고 있어 그 해석에 어려움을 겪고 있 다. 실제 마찰이 저속에서 고급 비선형임에도 불구하고 가장 널리 사용되는 형태의 모델로서 쿨통 마찰을 고려한 운동방정식 조차 비선형성으로 인하여 해석에 어려움이 따르고 있다. 마찰은 오랜동안 연구되어 오면서 Fig.1, Fig2 와 같이 등가선형점성 감쇠, 쿨통마찰, 정적마찰로 모델화되거나 이들의 조 합으로 나타내었다[1-5]. 마찰력은 시간영역에서도 연구되어 Walrath[7]는 Fig.3-a의 속도가 역전되는 지점에서 마찰토오크가 .+-.Tf를 공유하는 문제 를 고려하기 위해, Fig.3-b와 같이 동적마찰모델을 사용하였다. 최근의 연구 로서 Armstrong[7]은 마찰의 위치의존성을 고려한 정확한 마찰모델을 설정 하여 개루프제어에 적용, 좋은 제어특성을 확인하였고, Canudas[8]는 저속영 역에서 overcompensation시 limit cycle과 gain의 관계를 해석하였다.

  • PDF