• Title/Summary/Keyword: 마찰모델링

Search Result 146, Processing Time 0.027 seconds

Numerical Studies on Combined VM Loading and Eccentricity Factor of Circular Footings on Sand (모래지반에서 원형기초의 수직-모멘트 조합하중 지지력과 편심계수에 대한 수치해석 연구)

  • Kim, Dong-Joon;Youn, Jun-Ung;Jee, Sung-Hyun;Choo, Yun Wook
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.3
    • /
    • pp.59-72
    • /
    • 2014
  • For circular rigid footings with a rough base on sand, combined vertical - moment loading capacity was studied by three-dimensional numerical modelling. Mohr-Coulomb plasticity model with the associated flow-rule was used for the soil. After comparing the results of the swipe loading method, which can construct the interaction diagram with smaller number of analyses, and those of the probe loading method, which can simulate the load-paths in the conventional load tests, it was found that both loading methods give similar results. Conventional methods based on the effective width or area concept and the results by eccentricity factor ($e_{\gamma}$) were reviewed. The results by numerical modelling of this study were compared with those of previous studies. The combined loading capacity for vertical (V) - moment (M) loading was barely affected by the internal friction angle. It was found that the effective width concept expressed in the form of eccentricity factor can be applied to circular footings. The numerical results of this study were smaller than the previous experimental results and the differences between them increased with the eccentricity and moment load. Discussions are made on the reason of the disparities between the numerical and experimental results, and the areas for further researches are mentioned.

Numerical Investigation on Combined Load Carrying Capacity and Consolidation Behavior of Suction Piles (석션파일의 조합하중 지지력 및 압밀거동에 관한 수치해석 연구)

  • Yoo, Chung-Sik;Hong, Seung-Rok
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.1
    • /
    • pp.103-116
    • /
    • 2014
  • This paper presents the results of a numerical investigation on the load carrying capacity and consolidation behavior of suction piles. Three dimensional numerical models which reflect realistic ground conditions and installation procedures including the ground-suction pile interface were adopted to conduct a parametric study on variables such as the length-diameter ratio and the loading configurations, i.e, vertical, horizontal, and combined loads. The results indicated that the load carrying capacity of a suction pile can only be realistically obtained when the interface behavior between the suction pile and the ground is correctly modeled. Also carried out was the stress-pore pressure coupled analysis to investigate the consolidation behavior of the suction pile after the application of a vertical loading. Based on the results, failure envelops and associated equations were developed, which can be used to estimate load carrying capacity of suction piles installed in similar conditions considered in this study. The results of consolidation analysis based on the stress-pore pressure coupled analysis indicate that no significant excess pore pressure and associated consolidation settlement occur for the loading configuration considered in part due to the load transfer mechanism of the suction pile.

Design of the Fuzzy Logic Cross-Coupled Controller using a New Contouring Modeling (새로운 윤곽 모델링에 의한 퍼지논리형 상호결합제어기 설계)

  • Kim, Jin-Hwan;Lee, Je-Hie;Huh, Uk-Youl
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.37 no.1
    • /
    • pp.10-18
    • /
    • 2000
  • This paper proposes a fuzzy logic cross-coupled controller using a new contouring modeling for a two-axis servo system. The general decoupled control approach may result in degraded contouring performance due to such factors as mismatch of axial dynamics and axial loop gains. In practice, such systems contain many uncertainties. The cross-coupled controller utilizes all axis position error information simultaneously to produce accurate contours. However, the conventional cross-coupled controllers cannot overcome friction, backlash, and parameter variations. Also since, it is difficult to obtain an accurate mathematical model of multi-axis system, here we investigate a fuzzy logic cross-coupled controller of servo system. In addition, new contouring error vector computation method is presented. The experimental results are presented to illustrate the performance of the proposed algorithm.

  • PDF

Assessment of Rock Slope Stability and Factor Analysis with a Consideration of a Damaged Zone (손상대를 고려한 암반사면 안정성 평가 및 인자분석)

  • Kim, Jin-Soo;Kwon, Sangki;Cheon, Dae-Sung;Park, Eui-Seob
    • Tunnel and Underground Space
    • /
    • v.24 no.3
    • /
    • pp.187-200
    • /
    • 2014
  • After excavation or blasting, rock properties within an excavation damaged zone can be perpetually weakened on account of stress redistribution or blasting impact. In the present study, the excavation damaged zone is applied to a rock slope. The objective of this research is to compare the mechanical stability of the rock slope depending on the presence of the damaged zone using 2-dimensional modeling and analyze factors affecting factor-of-safety. From the modeling, it was founded that the mechanical stability of the rock slope is significantly dependent on the presence of the damaged zone. In particular, factor-of-safety with a consideration of the damaged zone decreased by approximately 49.4% in comparison with no damaged zone. Factor analysis by fractional factorial design was carried out on factor-of-safety. It showed that the key parameters affecting factor-of-safety are angle of the slope, cohesion, internal friction angle and height.

A Fundamental Study on Behavior Characteristics of the Geosynthetic Composite Reinforcement in the Weathered Granite Backfill Soils (화강풍화토 뒤채움흙 내부 토목섬유 복합보강재의 거동특성에 관한 기초연구)

  • 김홍택;김승욱;전한용;이인모
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.5
    • /
    • pp.171-191
    • /
    • 1999
  • The final aim of this research is to systematize the reinforced-earth wall system using the geosynthetic composite reinforcement in the weathered granite backfill soils having relatively large amount of fines. As a staged endeavour to accomplish this purpose, laboratory pull-out tests and finite element modeling are carried out in the present study focusing on the analyses of friction characteristics associated with interaction behaviors of the geosynthetic composite reinforcement composed of geogrid with a superior function in tensile resistance and geotextile with sufficient drainage effects. In addition, drainage effects of the geotextile below geogrid are examined based on the analysis of finite difference numerical modeling. From the present investigation, it is concluded that the geosynthetic composite reinforcement in the weathered granite backfills may possibly be used to achieve effects on both a reduction of deformations and an increase of the tensile resistance, together with drainage effects resulting from the geotextile.

  • PDF

Stabilization Design of Large Rotating Stand Using Sliding Mode Control (슬라이딩모드 제어 기법을 이용한 대형 구동기 안정화 설계)

  • Kim, Sungryong;Park, Dongmyung;Moon, Wooyong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.10
    • /
    • pp.1045-1052
    • /
    • 2015
  • In this paper, a stabilized control algorithm for the large rotating stand of a long-range surveillance radar (LRSR) system is introduced. The stabilized control algorithm for this large rotating stand system was designed using mathematical plant modeling. The LRSR system is located on high ground and has a wide surface, making it susceptible to the effects of wind, which increases the bearing friction and reduces the stability of the rotating stand. The disturbance caused by the wind was analyzed using computational fluid dynamics (CFD) in this study. The results of the CFD analysis were used to construct a control algorithm for the disturbance . The performance of the proposed control algorithm was demonstrated experimentally and through simulations. The plant model and the control algorithm were constructed in Matlab/Simulink.

Validating Numerical Analysis Model Modeling Method by Polyhedral Rubble Mound Structure Arrays (다면체 사석배열 해안구조물에 대한 수치해석모델의 모델링 기법 검증)

  • Choi, Woong-Sik;Kim, Kee-Dong;Han, Tong-Seok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.3
    • /
    • pp.723-728
    • /
    • 2014
  • Hydraulic experiments are performed in order to verify the swash effect of seashore structures installed to prevent scouring. However, a great deal of investment and time are required for producing the test apparatus and seashore structure used to perform the hydraulic experiment. The swash effect can be predicted, however, by using a numerical model and validation can be done based on comparisons of the numerical model and hydraulic experiment analysis results, thereby saving the cost and time required for producing the test apparatus and seashore structure. Taking a polyhedral rubble mound structure as the subject, this study performed a comparative analysis of wave run-up and run-down height of the numerical model interpretative results and the hydraulic experiment results, and validated the interpretative simulation wave test modeling technique. The study also predicted the swash effect by using the numerical interpretation approach method, whereby the volume ratio and friction area of the rubble mound were varied for different results.

Structural Design of 3D Printer Nozzle with Superior Heat Dissipation Characteristics for Deposition of Materials with High Melting Point (고 용융점 소재의 압출적층성형을 위한 우수한 방열특성을 갖는 3차원 프린터 nozzle부 기구설계)

  • Kim, Wan-Chin;Lee, Sang-Wook
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.2
    • /
    • pp.313-318
    • /
    • 2020
  • Since the engineering plastics having a melting point of higher than 300 degrees have a high mechanical rigidity, chemical resistance, friction and abrasion performance, those are being highlighted as metal replacement materials in various industries. In this study, 3D printer nozzle with excellent heat dissipation characteristics are designed and analytically verified to form engineering plastics with high melting points in 3D printers based on the melt-lamination modeling method. In order to insulate between the heat block heated to a melting point of filament material and the upper part of the nozzle where the filament is transferred, the heat brake part with low thermal conductivity was designed to have two separate parts, and a cooling fin structure is further applied to the heat brake part to lower steady-state temperature by air convection. Optimized structural design on FDM nozzle part reduces the temperature at the heat sink and at the end part of heat brake by 50% and 14% respectively, compared to the conventional BCnozzle structure.

Electromagnetic Retarder's Modeling and Voltage Control (전자기형 리타더의 모델링 및 전압제어)

  • Jung, sung-chul;Lee, ik-sun;Ko, jong-sun
    • Proceedings of the KIPE Conference
    • /
    • 2016.11a
    • /
    • pp.171-173
    • /
    • 2016
  • 일반적으로 대형 버스 및 트럭 등 같은 경우, 부하가 아주 크다. 또한 내리막길이나 장거리 운행 시에 잦은 제동으로 인하여 마찰을 이용한 기존 방식의 브레이크들은 브레이크 파열 및 페이드 현상 때문에 제동 안전성에 문제가 있다. 이러한 제동 부담을 분담하기 위해 현재 보조브레이크(리타더)가 필수적이며, 엔진 계통의 보조브레이크가 아닌 비접촉식 브레이크 같은 친환경 보조브레이크가 요구되고 있다. 그리고 차량 제동시 발생하는 기계에너지를 전기에너지로 회생하여 에너지효율을 향상시키려는 연구가 현재 활발히 진행되고 있다. 본 논문에서는 와전류를 이용한 전자기형 리타더에서 발생되는 전기에너지를 회수하기 위한 전압 제어 방법을 다룰 것이다. 리타더의 제동에너지를 전기에너지로 회생하기 위해 L-C 공진회로로 구성하였다. 리타더를 자여자 유도발전기(Self-Excited Induction Generator)로 모델링 하였고 이를 토대로 시뮬레이션 및 실험을 진행하였다. 자여자 유도발전기의 구동 조건에 대해서 언급하고 이를 파라미터에 따라 3-D map으로 만들었다. 또 회로 중의 FET 게이트에 전압을 인가하는 제어장치의 구동펄스에 따라 바뀌는 공진회로의 전압을 분석하였으며, 이 전압을 제어하기 위하여 PI 제어기를 이용한 알고리즘을 제안하였다. 이 전압을 3상 AC/DC컨버터를 통과한 후 DC/DC컨버터를 통하여 차량 내부의 배터리에 충전되는데 제어를 위해 3상 AC/DC에서의 전압 리플을 MA(Moving Average) 방식의 필터를 사용하여 DC/DC컨버터의 입력에 맞도록 제어하였다. 이와 같이 전자기형 리타더에서 유도되는 전압을 제어기의 제어 펄스에 따라 제어할 수 있으며 Matlab Simulink를 이용하여 리타더의 모델과 그 제어기의 타당성을 보였다. 또 실제 M-G Set 실험을 통하여 그 연관성을 확인하였다.

  • PDF

Analysis of the Transmission Error of Spur Gears Depending on the Finite Element Analysis Condition (스퍼 기어의 유한요소해석 조건에 따른 전달 오차 경향성 분석)

  • Jaeseung Kim;Jonghyeon Sohn;Min-Geun Kim;Geunho Lee;Suchul Kim
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.36 no.2
    • /
    • pp.121-130
    • /
    • 2023
  • Finite element analysis is widely used to predict the structural stability and tooth contact performance of gears. This study focused on the effect of finite element modeling conditions of a spur gear on the simulation result and the model simplification. The gear body and teeth, teeth width, configuration of mesh, frictional coefficient, and simulation time interval (gear mesh cycle division) were selected for model simplification for gear analysis. The static transmission error during a single-gear mesh cycle was calculated to represent the performance of the gear, and the elapsed time was measured as a simplification factor. Contact stress distribution was also checked. The differences in maximum transmission error and elapsed time depending on the model simplification methods were analyzed. After all simplification methods were estimated, an optimal combination of the methods was defined, and the result was compared with that of the most detailed modeling methods.