DOI QR코드

DOI QR Code

Analysis of the Transmission Error of Spur Gears Depending on the Finite Element Analysis Condition

스퍼 기어의 유한요소해석 조건에 따른 전달 오차 경향성 분석

  • Jaeseung Kim (Department of Smart Industrial Machine Technology, Korea Institute of Machinery & Materials) ;
  • Jonghyeon Sohn (Department of Smart Industrial Machine Technology, Korea Institute of Machinery & Materials) ;
  • Min-Geun Kim (Department of Smart Industrial Machine Technology, Korea Institute of Machinery & Materials) ;
  • Geunho Lee (Department of Smart Industrial Machine Technology, Korea Institute of Machinery & Materials) ;
  • Suchul Kim (Department of Smart Industrial Machine Technology, Korea Institute of Machinery & Materials)
  • 김재승 (한국기계연구원 스마트산업기계연구실 ) ;
  • 손종현 (한국기계연구원 스마트산업기계연구실 ) ;
  • 김민근 (한국기계연구원 스마트산업기계연구실 ) ;
  • 이근호 (한국기계연구원 스마트산업기계연구실 ) ;
  • 김수철 (한국기계연구원 스마트산업기계연구실 )
  • Received : 2023.03.21
  • Accepted : 2023.04.03
  • Published : 2023.04.30

Abstract

Finite element analysis is widely used to predict the structural stability and tooth contact performance of gears. This study focused on the effect of finite element modeling conditions of a spur gear on the simulation result and the model simplification. The gear body and teeth, teeth width, configuration of mesh, frictional coefficient, and simulation time interval (gear mesh cycle division) were selected for model simplification for gear analysis. The static transmission error during a single-gear mesh cycle was calculated to represent the performance of the gear, and the elapsed time was measured as a simplification factor. Contact stress distribution was also checked. The differences in maximum transmission error and elapsed time depending on the model simplification methods were analyzed. After all simplification methods were estimated, an optimal combination of the methods was defined, and the result was compared with that of the most detailed modeling methods.

기어의 구조 안정성 및 치물림 성능을 분석하기 위하여 유한요소해석이 널리 사용된다. 본 연구에서는 스퍼 기어의 유한요소 모델링 조건이 해석 결과 및 간소화 효과에 미치는 영향을 분석하였다. 기어 구조 해석의 간소화 방법으로 기어 몸체 및 잇수 간소화, 요소망 생성 방식, 접촉 및 마찰 조건, 해석 조건 등을 선정하였다. 기어의 성능해석 지표로써 1주기의 기어 치물림 사이클 동안의 정전달 오차를 계산하였고, 간소화 지표로써 해석 소요 시간을 측정하였다. 유한요소해석을 통해 치물림 주기에 따른 접촉 응력 분포 및 변화 양상을 확인하였다. 모델링 조건에 따라 최대 전달 오차와 해석 소요 시간에 차이를 확인하고 원인을 분석하였다.

Keywords

Acknowledgement

이 논문은 2023년 정부(방위사업청)의 재원으로 국방기술진흥연구소의 지원을 받아 수행된 연구임(No. KRIT-CT-21-013(협약번호), 차세대 회전익기 동력전달장치용 핵심부품, 2023년)

References

  1. American Gear Manufacturers Association (AGMA) (2004) Fundamental Rating Factors and Calculation Methods for Involute Spur and Helical Gear Teeth (Metric Edition), Paper No. 2101-D04, USA.
  2. Ansys Inc. (2004) Ansys Contact Technology Guide, Canonsburg, USA.
  3. Bartosova, D., Otipka, V., Reh ak, K. (2018) Determination of Transmission Error in Spur Gear by Numerical Approach, Vibroeng. Proced., 19, pp. 284~288. https://doi.org/10.21595/vp.2018.20239
  4. Budynas, G.R., Keith, J.N. (2011) Shigley's Mechanical Engineering Design, Mcgraw-Hill, New York, USA, pp.124~125.
  5. Chen, K., Huangfu, Y., Ma, H., Xu, Z., Li, X., Wen, B. (2019) Calculation of Mesh Stiffness of Spur Gears considering Complex Foundation Types and Crack Propagation Paths, Mech. Syst. & Signal Proc., 130, pp.273~292. https://doi.org/10.1016/j.ymssp.2019.05.014
  6. Czako, A., Rehak, K., Prokop, A., Ranjan, V. (2020) Determination of Static Transmission Error of Helical Gears using Finite Element Analysis, J. Measurements Eng., 8(4), pp.167~181. https://doi.org/10.21595/jme.2020.21825
  7. Hong, J., Talbot, D., Kahraman, A. (2013) Load Distribution Analysis of Clearance-fit Spline Joints using Finite Elements, Mech. & Mach. Theory, 74, pp.42~57. https://doi.org/10.1016/j.mechmachtheory.2013.11.007
  8. Hwang, S.C., Lee, D.H., Park, Y.C., Lee, K.H. (2011) Contact Stress Analysis of Helical Gear for Turbo Blower, J. Korean Soc. Manuf. Proc. Eng., 10(2), pp.90~95.
  9. Hwang, S.C., Lee, J.H., Lee, D.H., Han, S.H., Lee, K.H. (2013) Contact Stress Analysis for a Pair of Mating Gears, Math. & Comput. Model., 57, pp.40~49. https://doi.org/10.1016/j.mcm.2011.06.055
  10. International Organization for Standardizaion (ISO) (2019) Calculation of Load Capacity of Spur and Helical Gears - Part 2: Calculation of Surface Durability (Pitting), Paper No. ISO 6336-2:2019, Switzerland.
  11. Kim, J.S., Lee, H.S., Kim, D.G., Lyu, S.K. (2010) Analysis of Tooth Surface Compressive Stress of Conical Involute Gear by Profile Modification, J. Korean Soc. Manuf. Proc. Eng., 9(5), pp.40~49.
  12. Kim, S.C., Lee, G.H., Moon, S.G., Kim, J.S., Choi, J.H., Choi, C.H., Ahn, H.J., Sohn, J.H. (2023) An Efficient Process for Macro Geometry Optimization of Helical Gear Pairs considering Static Transmission Error, Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci., Available at SSRN 4133209.
  13. Lee, J.H., Lee, D.H., Lee, K.H. (2010) Contact Stress Analysis of a Pair of Mating Spur Gears, J. Korean Soc. Manuf. Proc. Eng., 9(4), pp.59~65.
  14. Lee, K.W., Ban, J.S., Kim, G.H., Cho, K.Z. (2002) A Study on Stress Analysis of Spur Gear using FEM, J. Korean Soc. Precis. Eng., 19(2), pp.171~176.
  15. Lee, S., Lee, D.H., Hwang, S.C., Lee, K.H. (2012) Stress Analysis of Helical Gear for a Railway Reducer, J. Korean Soc.Manuf. Proc. Eng., 11(2), pp.55~59.
  16. Roda-Casanova, V., Sanchez-Marin, F. (2019) A 2D Finite Element based Approach to Predict the Temperature Field in Polymer Spur Gear Transmissions, Mech.& Mach. Theory, 133, pp. 195~210. https://doi.org/10.1016/j.mechmachtheory.2018.11.019
  17. Roda-Casanova, V., Sanchez-Marin, F.T. Gonzalez-Perez, I., Iserte, J.L., Fuentes, A. (2013) Determination of the ISO Face Load Factor in Spur Gear Drives by the Finite Element Modeling of Gears and Shafts, Mech.& Mach. Theory, 65, pp. 1~13. https://doi.org/10.1016/j.mechmachtheory.2013.02.006
  18. Sirichai, S., Howard, I., Morgan, L., The, K. (1997) Finite Element Analysis of Gears in Mesh, 5th Intl. Congress on Sound & Vibration, 1, pp.869~876.
  19. Zhou, C., Hu, B., Qian, X., Han, X. (2018) A Novel Prediction Method for Gear Friction Coefficients based on a Computational Inverse Technique, Tribol. Int., 127, pp.200~208. https://doi.org/10.1016/j.triboint.2018.06.005