• Title/Summary/Keyword: 마찰각

Search Result 782, Processing Time 0.029 seconds

Moment Resisting Behaviors of Railway Electric Pole Foundation According to Form Work Methods (거푸집 설치 방법에 따른 철도 전철주기초의 모멘트 저항 거동)

  • Lee, Su-Hyung;Lee, Seung-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.1
    • /
    • pp.411-417
    • /
    • 2013
  • The moment responses of electric pole foundations for a railroad were investigated using real-scale load tests. Large overturning moments were applied to two square rigid piles with a 1.1 m width and a 2.2 m embedded depth. Two different installation methods-with and without a form-were applied to evaluate the influence of the form work on the moment capacities of the foundations. The reduction of ground strength caused by the excavation without a form is more pronounce than the decrease of frictional strength due to the smooth concrete surface with a form. From the test results, it is found that the current design method which applies a proportional coefficient to consider the effect of a form work is not appropriate. When the normal and frictional stressed is considered separately, the effect of a form work can be estimated reasonably by reducing the friction angle between soil and foundation by 20%.

Optimal Design and Analysis of Ducted Fan Clutch With or Without Mechanical Lock-up (기계적 잠금장치의 적용여부에 따른 덕티드팬 클러치의 최적설계 및 분석)

  • Su-chul Kim;Jae-seung Kim;Sang-gon Moon;Geun-ho Lee
    • Journal of Aerospace System Engineering
    • /
    • v.17 no.1
    • /
    • pp.10-15
    • /
    • 2023
  • Wet multi-disk clutch, a power switching device of the ducted fan, was optimized and results were analyzed. The clutch was divided into two types depending on whether a mechanical lock-up was applied or not. It was optimized under each design condition. Transfer torque capacity, friction material surface pressure, friction surface temperature, and drag torque were calculated as factors to optimize the clutch. The volume of separator plate and drag torque were used as the objective function for optimization. In the case of Type 1, which did not include a mechanical lock-up, the clutch could be operated regardless of the pitch angle of the ducted fan. However, the outer diameter of the friction surface was doubled, the volume was increased by 5~7 times, and the drag torque was increased by 7~12 times compared to those of Type 2, which included a mechanical lock-up.

The effect of bracket width on frictional force between bracket and arch wire during sliding tooth movement (치아의 활주 이동시 브라켓 폭이 브라켓과 호선 사이의 마찰력에 미치는 효과)

  • Choi, Won-Cheul;Kim, Tae-Woo;Park, Joo-Young;Kwak, Jae-Hyuk;Na, Hyo-Jeong;Park, Du-Nam
    • The korean journal of orthodontics
    • /
    • v.34 no.3 s.104
    • /
    • pp.253-260
    • /
    • 2004
  • Frictional force between the orthodontic bracket and arch wire during sliding tooth movement is related to many factors, such as the size, shape and material of both the bracket and wire, ligation method and the angle formed between the bracket and wire. There have been clear conclusions drawn in regard to most of these factors, but as to the effect of bracket width on frictional force there are only conflicting studies. This study was designed to investigate the effect of bracket width on the amount of frictional forces generated during clinically simulated tooth movement. Three different widths of brackets $(0.018{\times}0.025'\;standard)$ narrow (2.40mm), medium (3.00mm) and wide (4.25mm) were used in tandem with $0.016{\times}0.022'$ stainless steel wire. Three bracket-arch wire combinations were drawn on for 4 minutes on a testing apparatus with a head speed of 0.5mm/min and tested 7 times each. To reproduce biological conditions, dentoalveolar models were designed with indirect technique using a material with similar elastic properties as periodontal ligament (PDL). In addition, to minimize the effect of ligation force, elastomer was used with added resin, which was attached to the bracket to make up for the discrepancies of bracket width. The results were as follows: 1. Maximum frictional force for each bracket-arch wire combination was: Narrow (2.40mm): $68.09\pm4.69gmf$ Medium (3.00mm): $72.75\pm4.98 gmf$ Wide (4.25mm): $72.59\pm4.54gmf$ 2. Frictional force was increased with more displacement of wire through the bracket slot. 3. The ANOVA psot-hoc test showed that the bracker width had no significant effect on frictional force when tested under clinically simulated conditions(p>0.05).

Effects of Rib Angles on Heat Transfer in a Divergent Square Channel With Ribs on One Wall (한 면에 리브가 설치된 확대 정사각 채널에서 리브 각이 열전달에 미치는 효과)

  • Lee, Myung Sung;Ahn, Soo Whan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.6
    • /
    • pp.609-613
    • /
    • 2015
  • In this study, the experiments are performed to investigate the local heat transfer and pressure drops of developed turbulent flows in the diverging square channels along the axial distance. The square divergent channels are manufactured with a fixed rib height (e) = 10 mm. Four different parallel angled ribs ($a=30^{\circ}$, $45^{\circ}$, $60^{\circ}$, and $90^{\circ}$) are placed on the channel's one-sided wall only. TThe measurement are conducted within the range of Reynolds numbers from 22,000 to 79,000. The results show that a rib angle-of-attack of $45^{\circ}$ produces the best heat-transfer performance.

Estimation of Friction Angle of Rubble Mound by Centrifuge Model Tests (원심모형시험에 의한 사석재의 내부마찰각 추정)

  • Yoo, Nam-Jae;Park, Byung-Soo;Jeong, GiI-Soo;Lee, Jong-Ho
    • Journal of Industrial Technology
    • /
    • v.22 no.A
    • /
    • pp.153-159
    • /
    • 2002
  • This paper is an experimental work of estimating friction angle of very coarse grained soil such as rubble mound by performing laboratory experiments. Two crushed rocks of rubble mound were used for tests. Triaxial compression tests with drained conditions were performed to measure friction angles of soils prepared by mixing the crushed soil having an identical coefficient of uniformity with different maximum grain size distribution. Centrifuge model experiments with those soils were also performed to measure angle of repose and to estimate friction angle of soil from measuring the slope of slip line in the active stress state. Model tests were carried out by changing the G-levels of 1G and 50G. From triaxial compression tests, the measured value of friction angle of soil is in the range of $41{\sim}57^{\circ}$. The measured value of repose angle is in the range of $32{\sim}35^{\circ}$. The values of friction angle are found not so sensitive to the maximum grain size of soil as long as the coefficient of uniformity is identical. Estimated value of friction angle from measuring the slope of slip line in the active stress state is in the range of $30{\sim}46^{\circ}$. Thus, the estimated angle of friction are found to be greater in the order of the measured angle of repose, the estimated value from the slope of active state, and triaxial compression test results. On the other hand, the measured values of friction angle from triaxial tests were compared with empirical equations, based on the relation between friction angle and void ratio. Equations proposed by Helenelund(l966) and Hansen(1967) found to be relatively reliable to estimate friction angles of soil.

  • PDF

Reliability Analysis of Plane Failure in Rock Slope (암반사면의 평면파괴에 대한 신뢰성해석)

  • 장연수;오승현;김종수
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.4
    • /
    • pp.119-126
    • /
    • 2002
  • A reliability analysis is performed to investigate the influence of the uncertainty from few in-situ samples and inherent heterogeneity of the ground on the probability of failure for a rock cut slope. The results are compared with those of deterministic slope stability analysis. The random variables used are unit weight of the rock, the angle of potential slope of failure, and cohesion and internal friction angle of joints. It was found that the rock slope in which the factor of safety satisfied the minimum safety factor in the deterministic analysis has high probability of failure in the reliability analysis when the weak geological strata are involved in the cut slope. The probability of failure of rock slope is most sensitive to the mean and standard deviation of cohesion in rock joint among the random soil parameters included in the reliability analysis. Sensitivities of the mean values are larger than those of standard deviations, which means that accurate estimation of the mean for the in-situ geotechnical properties is important.

Generalized Formula for Active Earth Pressure Estimation with Inclined Retaining Wall (점착력을 고려한 배면 경사 옹벽에서의 주동토압 산정 공식)

  • Kim, Woncheul;Hwang, Youngcheol
    • Journal of the Korean GEO-environmental Society
    • /
    • v.9 no.5
    • /
    • pp.71-81
    • /
    • 2008
  • Active earth pressure formula, which can consider the effects of ground surface inclination, inclination of inside retaining wall face, wall friction, line load, uniform load, soil cohesion and adhesion, was derived based on the force equilibrium principle. In order to verify the accuracy of this proposed formula, the calculated active earth pressures by the proposed formula were compared with those of graphical solutions. Also, the active earth pressures determined by the proposed formula were compared with those by Coulomb's, Rankine's and Mazindrani's solution under specific conditions. The results matched quite well not only with the graphical solutions but also with those by three other methods. Also, the trend of active earth pressures by the proposed formula were corresponded with results of experimental study by Fang, et al. It can be concluded that this generalized formula not only can overcome the limitations of Rankine's, Coulomb's and Mazindrani's active earth pressure formula but also can consider the external loading conditions.

  • PDF

Geomorphic-characteristics of debris flow induced by typhoon "RUSA" in 2002 using Shalstab Model and Remote Sensing: case study in Macheon region near Jiri-Mountain (원격탐사와 수치 모형을 이용한 2002년 태풍 "루사"에 의해 발생한 토석류 발생지점특성: 지리산 마천면 지역을 사례로)

  • Kim, Minseok;Kim, Jin Kwan;Cho, Youngchan;Kim, Sukwoo
    • Journal of The Geomorphological Association of Korea
    • /
    • v.18 no.4
    • /
    • pp.193-202
    • /
    • 2011
  • Kompsat EOC-1 imagery, high resolution air-photo imagery and Shalstab model were used to analyze the geomorphic characteristics of the place of debris flow occurred by typhon "RUSA" in 2002, Macheon-Myen, Gyeongsang prefecture, Republic of Korea. On gully-head over 35 degree of slope angle, almost debris flow started, where slope angle is more than internal friction angle. The result simulated by Shalstab model presented larger vulnerable area to debris flow than the area where debris flow really occurred, this error would be attributed to the assumption for steady-state condition with full saturated surface. To predict the debris flow accurately, further study for rainfall and soil water flow will be needed.

Comparison of Construction Cost and External Stability of Railway Abutment wall with Friction Angle of Backfill Materials (뒷채움재의 내부마찰각 변화에 따른 철도교대의 안정성 및 공사비 비교)

  • Yoo, Chunghyun;Choi, Chanyong;Yang, Sangbeom;Park, Yonggul
    • Journal of the Korean Geosynthetics Society
    • /
    • v.15 no.3
    • /
    • pp.67-76
    • /
    • 2016
  • The railway bridge abutment subjected to the lateral earth pressure is a sensitive structure that is affected by backfill materials, installation methods, compaction, and drainage system and so on. The several design loads for the bridge abutment design consist of traffic loading on bridges and vertical & lateral force due to surcharge load at backfill. Especially, the lateral earth pressure of design load components is important and considered in the design of geotechnical engineering structure such as bridge abutment wall. The determination of cross section for abutment is finally determined with calculating external stability and member force of abutment wall structures. In this study, the abutment wall height is 12m and the optimal cross section of abutment wall has been determined that satisfies an external stability for abutment structure through friction angles of 35, 40, and 45 degrees of backfill materials. The external stability and member force of abutment wall with friction angle of backfill materials and were calculated and construction cost of each abutment wall structures was compared. It found that the construction cost was reduced from 2.2 to 8.4% with friction angle of backfill materials.

Laboratory Study of the Shear Characteristics of Fault Gouges Around Mt. Gumjung, Busan (부산 금정산일대에 분포하는 단층비지의 전단특성에 관한 실험적 고찰)

  • Woo, Ik
    • The Journal of Engineering Geology
    • /
    • v.22 no.1
    • /
    • pp.113-121
    • /
    • 2012
  • The mechanical characteristics of a fault gouge from near Mt. Kumjung in Kumjung-Gu, Busan, were estimated from laboratory tests on different joint models. Fault gouge samples and joint samples in biotite granite were obtained from boreholes in the study area that had penetrated small faults associated with the Dongnae and Yangsan faults. XRD and SEM analyses revealed that for the fault gouge consists of several clay minerals with tabular structure (kaolinite, montmorillonite, illite, sericite), which could cause the considerable reduction of shear strength when wet. The shear strength of the fault gouge was obtained from direct shear tests of the fault gouge itself and from direct shear tests of several natural/artificial joint surfaces coated with fault gouge. The results indicate that the reduction of shear strength is more abrupt for the joint surfaces coated with fault gouge compared with uncoated joint surfaces, and that the friction angle of the fault gouge between joint surfaces is much lower than the internal friction angle of the fault gouge itself. Fault gouges in contact with rock, therefore, could have a stronger negative effect on the stability of structures in rock masses than the fault gouge itself.