• Title/Summary/Keyword: 마이크로 추력기

Search Result 38, Processing Time 0.021 seconds

Catalytic Decomposition of Hydrogen Peroxide for Application on Micro Propulsion (마이크로 추력기 응용을 위한 과산화수소 촉매 분해 반응)

  • An Sung-Yong;Lee Jong-Kwang;Rang Seong-Min;Kwon Se-Jin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.9 no.4
    • /
    • pp.1-8
    • /
    • 2005
  • An experimental investigation of a microthruster that uses hydrogen peroxide as a monopropellant is described. The study comprises of preparation method of silver as a catalyst and performance evaluation of a mesoscale reactor. Reduction of silver in $H_2\;at\;500^{\circ}C$ resulted in the best reactivity of all the treatment method tested. A mesoscale reactor was built to find the optimum configuration for full decomposition of propellant. The catalyst bed was made of a glass wafer substrate sputtered with silver and had a length of 20 mm. We measured the conversion rate with varying feed rate of $H_2O_2$ and preheating temperature. With the feed rate of $H_2O_2$, the space time within the reactor varies as well. For the bed length of 20 mm, space time more than 480 s was required for full conversion.

Characteristic Study of Micro-Nozzle according to the Ratio of Nozzle Expansion and Specific heats (노즐 팽창비와 비열비에 따른 마이크로 노즐의 특성연구)

  • Oh Hwayoung;Huh Hwanil;Moon Seonghwan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • v.y2005m4
    • /
    • pp.381-385
    • /
    • 2005
  • Recently, spacecraft technology trends can be expressed three words, i.e. 'faster, cheaper and smaller'. Among these systems, micro propulsion device is an essential component. Also micro nozzle is the most important part in the micro propulsion device. In case of cold-gas thruster, micro nozzle converts the stored energy in a pressurized gas into kinetic energy through expansion ratio. In this paper we report characteristics of micro nozzle with throat expansion ratio and ratio of specific heats. We measure thrusts using strain gauge based thrust measurement system. We can estimate the micro nozzle performance through experiments.

  • PDF

Performance Evaluation of Components of Micro Solid Propellant Thruster (마이크로 고체 추진제 추력기 요소의 성능 평가)

  • Lee, Jong-Kwang;Lee, Dae-Hoon;Kwon, Se-Jin
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1280-1285
    • /
    • 2004
  • Microsystem technology has been applied to space technology and became one of the enabling technology by which low cost and high efficiency are achievable. Micro propulsion system is a key technology in the miniature satellite because micro satellite requires very small and precise thrust force for maneuvering and attitude control. In this paper research on micro solid propellant thruster is reported. Micro solid propellant thruster has four basic components; micro combustion chamber, micro nozzle, solid propellant and micro igniter. In this research igniter, solid propellant and combustion chamber are focused. Micro igniter was fabricated through typical micromachining and evaluated. The characteristic of solid propellant was investigated to observe burning characteristic and to obtain burning velocity. Change of thrust force and the amount of energy loss following scale down at micro combustion chamber were estimated by numerical simulation based on empirical data and through the calculation normalized specific impulses were compared to figure out the efficiency of combustion chamber.

  • PDF

Performance test of micronozzle (마이크로 노즐 성능평가)

  • Moon, Seong-Hwan;Oh, Hwa-Young;Huh, Hwan-Il
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.5
    • /
    • pp.72-78
    • /
    • 2005
  • We conducted the performance test of micronozzle having nozzle throat diameter of 1.0, 0.5, 0.25 mm in an ambient pressure. We used N2 gas as a cold gas propellant. We varied chamber pressure from 2 to 20 bar and measured the thrust and mass flow rate. Through the test, we concluded that viscous losses were increased with decreasing chamber pressure. We found that micronozzle performance was higher than orifice performance through thrust comparison.

Cathode Power Development of Hall Thruster for Small Satellite using Microwave cathode (마이크로웨이브 음극을 이용한 소형 인공위성의 홀 추력기용 음극전원 개발)

  • Kang, Seokhyun;Choo, Wongyo;Choi, Junku;Jeong, Yunhwang;Kim, Younho;Kang, Seongmin;Kuninaka, Hitoshi;Cha, Hanju
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.11
    • /
    • pp.974-980
    • /
    • 2014
  • A power supply of cathode has been developed for hall-effect thruster for small satellite. A microwave cathode has been applied to the electric propulsion system and cathode power is necessary in oder to work securely. Anode current is varied by a flow rate controlled by anode tank pressure. Then cathode current has to be controled in proportion by anode current. So cathode power supply has been designed to offer a current proportional to anode current. Also cathode power has been tuned to work securely for cathode to emit more electron than anode within 0.03A. The function test of cathode power was performed by constructing an equivalent load for anode and cathode. It has been tested in a vacuum chamber in order to ensure a stable operation of the thruster. And it was confirmed that thruster normally has been operated in the space environment after the launch.

Study on super-hydrophobic electro-spray micro thruster and measurement of micro scale thrust (초소수성 전기 분무 마이크로 추진 장치 및 마이크로 추력 측정)

  • Lee, Young-Jong;Yoo, Yong-Hoon;Tran, Si Bui Quang;Kim, Sang-Hoon;Park, Bae-Ho;Buyn, Do-Young
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.2
    • /
    • pp.175-180
    • /
    • 2009
  • In this article, we fabricated polytetrafluoroethylene(PTFE) nozzle treated by ion beam, in order to fabricate polymer based electrospray micro thruster with super hydrophobic nozzle. To obtain the super hydrophobic surface, PTFE surface is treated by argon and oxygen plasma treatment process. The optimal condition is investigated argon and oxygen flow rate as well as the paalied energy level for the treatment process. Fabricated nozzle was evaluated by measuring contact angle, and the surface morphology was examined by using scanning electron microscope(SEM) and atomic force microscope(AFM). We observe that jetting becomes more stable and repeatable on the treated nozzle. And to evaluate performance of fabricated nozzle, we measure micro scale thrust using a cantilever and a nozzle treated by ion beam laser displacement sensor.

Catalytic Reactor of Hydrogen Peroxide for a Micro Thruster (마이크로 추력장치용 과산화수소 촉매 반응기)

  • Lee, Dae-Hun;Cho, Jeong-Hun;Kwon, Se-Jin
    • 한국연소학회:학술대회논문집
    • /
    • 2002.11a
    • /
    • pp.237-240
    • /
    • 2002
  • Micro catalytic reactors are alternative propulsion device that can be used on a nano satellite. When used with a monopropellant, $H_2O_2$, a micro catalytic reactor needs only one supply system as the monopropellant reacts spontaneously on contact with catalyst and releases heat without external ignition, while separate supply lines for fuel and oxidizer are needed for a bipropellant rocket engine. Additionally, $H_2O_2$ is in liquid phase at room temperature, eliminating the burden of storage for gaseous fuel and carburetion of liquid fuel. In order to design a micro catalytic reactor, an appropriate catalyst material must be selected. Considering the safety concern in handling the monopropellants and reaction performance of catalyst, we selected hydrogen peroxide at volume concentration of 70% and perovskite redox catalyst of lantanium cobaltate doped with strondium. Perovskite catalysts are known to have superior reactivity in reduction-oxidation chemical processes. In particular, lantanium cobaltate has better performance in chemical reactions involving oxygen atom exchange than other perovskite materials. In the present study, a process to prepare perovskite type catalyst, $La_{0.8}Sr_{0.2}CoO_3$, and measurement of its propellant decomposition performance in a test reactor are described.

  • PDF

Small Thruster Development Based on Pulse Energy (펄스 에너지 기반의 소형 추력 장치 개발)

  • Choi, Soo-Jin;Gojani, Ardian B.;Yoh, Jai-Ick
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.365-368
    • /
    • 2009
  • A new concept of a small thruster for altitude control of a micro/nano class satellite is developed, which utilizes the pulsed laser energy. As the laser-based thruster does not require burning of any fuel, it gives promise of small satellite design criteria, namely light weight and cost effectiveness. In this paper, we develop gel-type material for generating strong plasma plume for enhancing thrust for propulsion. Moreover, we quantify the level of thrust via the momentum coupling coefficient measured by the pendulum system. We discover that the driving force is significantly improved via the gel-typed propellant for laser ablation.

  • PDF

Vacuum Facility at the CNU for High Altitude Space Environment Test (충남대학교 고고도 우주환경모사 진공실험 장치)

  • Shin, Kang-Chang;Lee, Min-Jae;Jung, Sung-Chul;Kim, Youn-Ho;Kim, Hye-Hwan;Huh, Hwan-Il
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.04a
    • /
    • pp.49-52
    • /
    • 2007
  • Vacuum facility is required for high altitude space environment test to develop small thruster. We, at Chungnam National University, developed vacuum test facility up to $10^{-5}$ torr to simulate $100{\sim}120km$ altitude environment. Prior to operation, we predict vacuum pump performances and present preliminary calculation and experiments.

  • PDF

과학기술위성 2호 시스템

  • Lee, Seung-Hun;Park, Jong-Oh;Sim, Eun-Sup
    • Aerospace Engineering and Technology
    • /
    • v.4 no.2
    • /
    • pp.60-64
    • /
    • 2005
  • STSAT-2 will demonstrate the scientific mission(acquisition of brightness temperature of the earth at 23.8 GHz and 37 GHz) and spacecraft technologies(laser ranging, frame-type satellite structure, Dual-head star tracker, CCD sun sensor, pulsed plasma thruster, etc.). In this paper STSAT-2 satellite system is described. It includes the definition of the system and the overview of payloads and BUS.

  • PDF