• Title/Summary/Keyword: 마이크로 가스터빈

Search Result 96, Processing Time 0.034 seconds

Distributed and Dispersed Power Resources : Paradigm Shift of Energy Technology (에너지 기술의 패러다임 전환 : 분산형 전원)

  • 김형택;신영균;천원기
    • Journal of Energy Engineering
    • /
    • v.10 no.1
    • /
    • pp.1-9
    • /
    • 2001
  • 전력 사업 구조 개편과 전력계통 신뢰도에 대한 우려 증대, 풍부하고 저렴한 천연가스, 새로운 대기 오염 규제, 부정전전원의 가치 증대로 인하여 분산형 발전의 수요가 증가하고 있다. 본고에서는 미국의 사례를 중심으로 분사형 전원의 현황을 개략적으로 살펴보고 핵심기술인 왕복동엔진, 가스터빈, 마이크로터빈, 연료전지, 태양광발전 기술들의 특징, 장점, 경제성 등을 서술하고 이 기술들의 활용범위 및 분산형 시스템으로서의 적합성에 대하여 논하며 관련 연구개발, 기존 전력망과의 연계, 문제점과 전망에 대해서 살펴보고자 한다.

  • PDF

Development of Test Facility for Micro Gas Turbine (마이크로 가스터빈 시험 장치 개발)

  • Lim, Hyung-Soo;Choi, Bum-Seog;Park, Moo-Ryong;Hwang, Soon-Chan;Park, Jun-Young;Seo, Jeongmin;Bang, Je-Sung;Lim, Young-Chul;Oh, In-Kyun;Kim, Byung Ok;Cho, Ju Hyeong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.18 no.5
    • /
    • pp.42-48
    • /
    • 2015
  • To improve the core technology of the micro gas turbine, the performance test facility was developed. This paper is focusing on the explanation of the characteristics of micro gas turbine and its assist devices. Major part of micro gas turbine were radial type of compressor, annular type of combustor, radial type of turbine, thrust foil bearing, radial foil bearing and generator. The assist devices were consist of exhaust duct, inverter, data acquisition system, load bank and test cell. Before building up the test facility, the component test was previously conducted to confirm the component performance. After the test facility was prepared, the motoring test was conducted to investigate the rotor dynamic characteristics of the micro gas turbine. Also, the part load performance test was performed. With a developed micro gas turbine test facility, the improved core technology about the micro gas turbine can be suggested to the related industries.

Performance Prediction of a Micro Gas Turbine Cogeneration System Using Correction Curves and its Applications (보정곡선을 이용한 마이크로가스터빈 열병합발전시스템의 성능예측과 활용)

  • Choi, Byeong Seon;Kim, Jeong Ho;Kim, Min Jae;Kim, Tong Seop
    • The KSFM Journal of Fluid Machinery
    • /
    • v.19 no.2
    • /
    • pp.27-35
    • /
    • 2016
  • The purpose of this study is to develop a method to predict the performance and economics of a micro gas turbine cogeneration system using performance correction curves. The variables of correction curves are ambient temperature, ambient pressure, relative humidity and load fraction. All of the values of correction factors were expressed as relative values with respect to design values at the ISO conditions. Once the correction curves are obtained, system performance can be predicted relatively easily compared to a detailed performance analysis method through a simple multiplication of the correction factors of various variables at any operating conditions. The predicted results using the correction curve method were compared with those by the detailed and more complex performance analysis in a wide operating range, and its feasibility was confirmed. To illustrate the usability of the correction curve method, the results of an economic analysis of a cogeneration system considering varying operating ambient condition and load was presented.

Design Parameter Sensitivity Analysis of a 200kW Class Micro Gas Turbine System (200kW급 마이크로 가스터빈 시스템의 설계 변수 민감도 해석)

  • Shin, Hyun Dong;Kang, Do Won;Kim, Tong Seop;Choi, Mun-Kyoung;Park, Pil Je
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.6
    • /
    • pp.39-45
    • /
    • 2012
  • This paper describes the outcome of the design of a 200 kW class micro gas turbine and the sensitivity of its performance (efficiency and power) to the variations in major design parameters. The reference design parameters were set up based on the best available component technologies. The resulting net electricity generation efficiency of the micro gas turbine package was found to be competitive to those of other systems in the market. The sensitivities of power and efficiency to the variations in compressor and turbine efficiencies, pressure ratio, turbine inlet temperature, recuperator effectiveness, secondary air ratio, pressure loss ratios of both the cold and hot sides of the recuperator were estimated. Based on the sensitivity data, a simplified method to predict the variation in system performance responding to the combinations of small changes in all design parameters were set up and validated.

Prediction of Power and Efficiency Requirement of Motor/generator for 500W Class Micro Gas Turbine Generator Considering Losses (손실을 고려한 500W급 마이크로 가스터빈 발전기용 전동발전기의 요구동력 및 요구효율 선정)

  • Park, Cheol-Hoon;Choi, Sang-Kyu;Ham, Sang-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.14 no.5
    • /
    • pp.24-30
    • /
    • 2011
  • 500W class MTG(Micro turbine generator) operating at 400,000 rpm is under development. From the cycle analysis, it is decided that the self-sustaining speed of MTG is 200,000rpm and the generating speed is 400,000 rpm. Therefore, motor should be designed so that it is able to rotate the rotor up to 200,000rpm and generator should designed so that it is able to generate 500W output at 400,000rpm. First step to design motor/generator is to determine the power and efficiency requirement. Not only the power into the compressor and from the turbine at the operating speed but also the mechanical and electrical losses should be considered in determining the power and efficiency requirement. This study presents the procedure and the results of determining the power and efficiency requirement considering the mechanical and electrical losses depending on the rotating speed which is measured from the experiment.

Rotordynamic Design of the Micro Gas Turbine Supported by Air Foil Bearings (공기포일베어링에 지지된 마이크로가스터빈의 회전체동역학적 설계)

  • Kim, Young-Cheol;Han, Jung-Wan;Kim, Kyung-Woong;Kim, Soo-Yong
    • 유체기계공업학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.662-667
    • /
    • 2003
  • This paper presents a performance analysis of the 1st generation bump foil journal bearings for the micro gas turbine TG75. Static performances such as load capacity and attitude angle are estimated by using soft elasto-hydrodynamic analysis technique, and dynamic performances such as stiffness and damping coefficients are estimated by perturbation method. Rotordynamic analysis for TG75 is performed by using the bearing analysis results. TG75 rotor has 2 horizontal and vertical directional natural modes due to the bearing stiffness characteristics. TG75 rotor will be stably operated between the 1st bending mode at 33000cpm and the 2nd bending mode at 85500cpm. Unbalance response analysis results satisfy the API vibration criteria.

  • PDF

Investigation of the Mixedness of Fuel and Air in MEMS Gas Turbine Engine According to Change of Fuel Injectors and Equivalence Ratio (연료 분사구 형상 변화 및 당량비 변화에 따른 MEMS 가스터빈 내 연료-공기 혼합에 관한 연구)

  • Hwang, Yu-Hyeon;Jung, Dong-Ho;Kim, Sun-Min;Kim, Dae-Joong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.9
    • /
    • pp.835-841
    • /
    • 2010
  • The design of the fuel injector is one of the important operating factors that determine the extent of mixing of air and fuel in an MEMS gas turbine engine. In this study, we consider a system with three inlet ports with each port having multiple injectors. We perform a parametric study by varying the arrangement of fuel injectors and difference of ratio of fuel supply. The results are presented in terms of the premixed flow distribution and equivalence ratio.

The Energy Performance & Economy Efficiency Evaluation of Micro Gas Turbine Installed in Hospital (대형병원 건물에 마이크로 가스터빈 적용을 위한 에너지성능 및 경제성 평가)

  • Kim, Byoung-Soo;Hong, Won-Pyo
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.5
    • /
    • pp.8-13
    • /
    • 2009
  • Feasibilities of the application of a micro gas turbine cogeneration system to a large size hospital building are studied by estimating energy demands and supplies. The energy demand for electricity is estimated by surveying and sorting the consumption records for various equipment and devices. The cooling heating, and hot water demands are further refined with TRNSYS and ESP-r to generate load profiles for the subsequent operation simulations. The operation of the suggested cogeneration system in conjunction with the load data is simulated for a time span of a year to predict energy consumption and gain profile. The simulation revealed that the thermal efficiency of the gas turbine is about 30% and it supplies 60% of the electricity required by the building. The recovered heat can meet 56% of total heating load and 67% of cooling, and the combined efficiency reaches up to 70%.