• Title/Summary/Keyword: 마이크로역학적모델

Search Result 19, Processing Time 0.026 seconds

Micro/nano analysis model for prediction of mechanical properties of the nanocomposite considering nano-particle size (나노입자 크기를 고려한 나노복합체의 역학적 특성 예측을 위한 마이크로/나노 해석 모델)

  • Kim, Bong-Rae;Yang, Beom-Joo;Lee, Haeng-Ki
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.116-118
    • /
    • 2011
  • 일반적으로 나노입자의 크기는 나노복합체의 역학적 특성에 상당한 영향을 미친다. 이에 본 연구에서는 나노입자 크기를 고려한 나노복합체 재료 구성모델 (Kim et al., 2011)을 소개하고자 한다. Kim et al. (2011)에 의해서 나노입자 크기효과를 위한 Size-dependent Eshelby tensor가 미세역학 모델에 적용되었으며, 나노스케일 해석과 함께 다양한 수치해석을 수행하였다. 특히, 본 연구에서는 이를 활용하여 $SiO_2$/Epoxy 나노복합체의 역학적 특성을 예측해 보았다.

  • PDF

Estimation of the Behavior of a Micropile due to Horizontal Load (횡방향 하중에 의한 마이크로파일의 거동 평가)

  • Lee, Seongmin;Baek, Seungcheol
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.6
    • /
    • pp.117-123
    • /
    • 2009
  • The mechanical behavior of a micropile due to horizontal load has not yet clearly identified in Korea. It has generally estimated from that of a traditional pile because there is no standard method even though it has shorter length. To tell the truth, its behavior is very different from a traditional pile's. Specifically, it is general fact that horizontal resistance of earth is one of the main factors to control the mechanical behavior of micropile. To this reason, a laboratory model has been made in this study to estimate the behavior of a micropile which loaded increasingly horizontally. The laboratory model has been designed to estimate both the behavior of load to displacement and skin friction to displacement. And the analysis of the latter was compared with the solution of strain wedge model. In the end, it was proved that the mechanical behavior of a micropile should be estimated from considering the horizontal resistance of earth.

  • PDF

Hydrodynamic controls on phytoplankton-nutrient dynamics in a river-dominated estuarine system (담수성 연안하구의 식물성플랑크톤-영양염 역학에 대한 수리학적 조절)

  • Sin, Yong-Sik
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.5 no.4
    • /
    • pp.347-351
    • /
    • 2002
  • 유입되는 담수의 영향을 크게 받는 한 하구 (미국 버지니아주의 요크강)의 크기별 식물성플랑크통의 역학에 대한 수리역학적 조절에 대한 조사를 위해 플랑크톤 생태계모델이 계발되었다. 모델은 요크강 하류의 상부층에서의 탄소 및 영양염의 분포를 나타내는 12개의 구성체 변수로 이루어져 있다. 빛, 온도, 바람, 해류 그리고 조수와 같이 이송과 혼합을 일으키는 물리적 변수들로 포함하고 있다. 모델은 포트란으로 계발되었고 Runge- Kutta technique을 이용해 미분방정식을 풀었다. 모델분석 결과, 크기가 큰 마이크로 식물성플랑크톤의 수화는 수체내의 생산보다는 이송이나 확산 때문에 나타나는 것임을 알 수 있었다.

  • PDF

Fiber Orientation and Warpage of Film Insert Molded Parts with Glass Fiber Reinforced Substrate (유리섬유가 강화된 필름 삽입 사출품의 섬유배향 및 휨)

  • Kim, Seong-Yun;Kim, Hyung-Min;Lee, Doo-Jin;Youn, Jae-Ryoun;Lee, Sung-Hee
    • Composites Research
    • /
    • v.25 no.4
    • /
    • pp.117-125
    • /
    • 2012
  • Warpage of the film insert molded (FIM) part is caused by an asymmetric residual stress distribution. Asymmetric residual stress and temperature distribution is generated by the retarded heat transfer in the perpendicular direction to the attached film surface. Since warpage was not prevented by controlling injection molding conditions, glass fiber (GF) filled composites were employed as substrates for film insert molding to minimize the warpage. Distribution of short GFs was evaluated by using micro-CT equipment. Proper models for micro mechanics, anisotropic thermal expansion coefficients, and closure approximation should be selected in order to calculate fiber orientation tensor and warpage of the FIM part with the composite substrate. After six kinds of micro mechanics models, three models of the thermal expansion coefficient and five models of the closure approximation had been considered, the Mori-Tanaka model, the Rosen and Hashin model, and the third orthotropic closure approximation were selected in this study. The numerically predicted results on fiber orientation tensor and warpage were in good agreement with experimental results and effects of GF reinforcement on warpage of the FIM composite specimen were identified by the numerical results.

An optimization approach for the optimal control model of human lower extremity musculoskeletal system (최적화 기법에 의한 인체 하지 근골격 시스템의 최적제어 모델 개발)

  • Kim, Seon-Pil
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.10 no.4
    • /
    • pp.54-64
    • /
    • 2005
  • The study investigated genetic algorithms for the optimal control model of maximum height vertical jumping. The model includes forward dynamic simulations by the neural excitation-control variables. Convergence of genetic algorithms is very slow. In this paper the micro genetic algorithm(micro-GA) was used to reduce the computation time. Then a near optimal solution from micro-GA was an initial solution for VF02, which is one of well-developed and proven nonlinear programming algorithms. This approach provided the successful optimal solution for maximum-height jumping without a reasonable initial guess.

  • PDF

Evaluation of Ductile Fracture Characteristics Based on Local Approach (국부접근법에 입각한 연성재료의 파괴특성 평가)

  • Lee, Tae-Rin;Chang, Yoon-Suk;Choi, Jae-Boong;Kim, Young-Jin
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.49-54
    • /
    • 2004
  • Several cell models, so-called local approach, have been proposed as engineering approaches to numerically simulate ductile fracture characteristics. In this paper, two- and three-dimensional finite element analyses incorporating both modified GTN and Rousselier models were carried out. Smooth and notched bars and CT25 specimens were assessed for StE460 and DIN22NiMoCr37 materials which were quoted from previous researches. Micro-mechanical parameters used in the assessment were established by fitting the numerical results with the experiments, and J-R curves derived from the simulations were found to be in good agreement with the corresponding experimental results.

  • PDF

Multi-scale Analysis of Thin film Considering Surface Effects (표면효과를 고려한 박막구조의 멀티스케일 해석)

  • Cho, Maeng-Hyo;Choi, Jin-Bok;Jung, Kwang-Sub
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.3
    • /
    • pp.287-292
    • /
    • 2007
  • In general, the response of bulk material is independent of its size when it comes to considering classical elasticity theory. Because the surface to bulk ratio of the large solids is very small, the influence of surface can be negligible. But the surface effect plays important role as the surface to bulk ratio becomes larger, that is, the contribution of the surface effect must be considered in nano-size elements such as thin film or beam structure. Molecular dynamics computation has been a conventional way to analyze these ultra-thin structures but this method is limited to simulate on the order of $10^6{\sim}10^9$ atoms for a few nanoseconds, and besides, very time consuming. Analysis of structures in submicro to micro range(thin-film, wire etc.) is difficult with classical molecular dynamics due to the restriction of computing resources and time. Therefore, in this paper, the continuum-based method is considered to simulate the overall physical and mechanical properties of the structures in nano-scale, especially, for the thin-film.

Phase Segmentation of PVA Fiber-Reinforced Cementitious Composites Using U-net Deep Learning Approach (U-net 딥러닝 기법을 활용한 PVA 섬유 보강 시멘트 복합체의 섬유 분리)

  • Jeewoo Suh;Tong-Seok Han
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.36 no.5
    • /
    • pp.323-330
    • /
    • 2023
  • The development of an analysis model that reflects the microstructure characteristics of polyvinyl alcohol (PVA) fiber-reinforced cementitious composites, which have a highly complex microstructure, enables synergy between efficient material design and real experiments. PVA fiber orientations are an important factor that influences the mechanical behavior of PVA fiber-reinforced cementitious composites. Owing to the difficulty in distinguishing the gray level value obtained from micro-CT images of PVA fibers from adjacent phases, fiber segmentation is time-consuming work. In this study, a micro-CT test with a voxel size of 0.65 ㎛3 was performed to investigate the three-dimensional distribution of fibers. To segment the fibers and generate training data, histogram, morphology, and gradient-based phase-segmentation methods were used. A U-net model was proposed to segment fibers from micro-CT images of PVA fiber-reinforced cementitious composites. Data augmentation was applied to increase the accuracy of the training, using a total of 1024 images as training data. The performance of the model was evaluated using accuracy, precision, recall, and F1 score. The trained model achieved a high fiber segmentation performance and efficiency, and the approach can be applied to other specimens as well.

Efficient Computational Fluid Dynamics Model for Microchannel-Type Steam/Methane Reformers with Nickel Washcoat Catalyst Layers Based on Effectiveness Factor Correlations (촉매유효도 상관식에 기반한 마이크로 채널형 수증기/메탄 개질기의 효율적인 전산유체역학 해석모델)

  • YUN SEOK OH;AREUM JEONG;JIN HYUN NAM
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.33 no.6
    • /
    • pp.749-760
    • /
    • 2022
  • An efficient computational fluid dynamics model was proposed for simulating microchannel-type steam/methane reformers with thin washcoat catalyst layers. In this model, by using the effectiveness factor correlations, the overall reaction rate that occurs in the washcoat catalyst layer could be accurately estimated without performing the detailed calculation of heat transfer, mass transfer, and reforming reactions therein. The accuracy of the proposed model was validated by solving a microchannel-type reformer, once by fully considering the complex steam/methane reforming (SMR) process inside the washcoat layer and again by simplifying the SMR calculation using the effectiveness factor correlations. Finally, parametric studies were conducted to investigate the effects of operating conditions on the SMR performance.

A Lattice Model for Intra-molecular and Inter-molecular Association in Mixture containing Surfactants (계면활성제를 함유한 혼합물에서 내외부 분자회합을 위한 격자모델)

  • Shin, Moon-Sam
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.5
    • /
    • pp.1768-1772
    • /
    • 2010
  • Intra-molecular association is an important contribution to the overall hydrogen bonding in surfactant systems, especially in systems of colloidal and biological interest. Amphiphile systems, especially micelle and microemulsion systems, showed highly non-ideal behavior due to the intermolecular association and intra-molecular association. The objective of this research is to present a lattice fluid equation of state that combines the quasi-chemical nonrandom lattice fluid model with modified Veytsman statistics for intra + inter molecular association to calculate phase behavior for mixture containing surfactant systems. The lattice model could describe the literature data well for alkane and surfactant systems.