• Title/Summary/Keyword: 마샬안정도 시험

Search Result 31, Processing Time 0.017 seconds

Effect of the Compaction Energy and the Marshall Stability due to the Marshall Equipments and Installation Conditions (마샬시험 장치 및 설치조건이 다짐에너지와 안정도에 미치는 영향)

  • Park, Tae-Soon;Kim, Yong-Ju
    • International Journal of Highway Engineering
    • /
    • v.2 no.4 s.6
    • /
    • pp.123-131
    • /
    • 2000
  • The compaction equipment and the Marshall stability head are the two important testing equipment for the Marshall test. The compaction equipment is closely related to the air void, VMA and compactability of the mixtures, and the stability head is related to the Marshall stability and the flow, therefore the size and the shape of the equipment is essential for finding the accurate optimum asphalt content for the asphalt mix design. However, the size and the shape of the equipment currently used and the condition of the installation of compaction pedestal in this country are different from each agency and manufacturer. The national inspection of the Marshall equipment is necessary because the difference can affect the test results and also the performance of the asphalt pavement.

  • PDF

Effect of Curing Temperature and Time on Measuring Fundamental Properties of Asphalt Mixture (양생온도 및 시간이 아스팔트 혼합물의 기초특성치 측정에 미치는 영향)

  • Kim, Kwang-Woo;Hong, Sang-Ki;Oh, Heung-Lak;Lee, Soon-Jae
    • International Journal of Highway Engineering
    • /
    • v.4 no.4 s.14
    • /
    • pp.13-21
    • /
    • 2002
  • This study examines the importance of conditioning temperature and period before measuring fundamental properties of asphalt mixture. Marshall specimens were made and cured in the air for one day and conditioned by submerging at $60^{\circ}C$ water for 30 min before loading. It was observed that if the specimen was cured in a lower (or higher) than normal lab temperature ($25^{\circ}C$) before submerging, the measured values were not consistent. Indirect tensile strength (ITS) was also measured on the specimens cured at different temperatures. Although there is no regulation specifying how long the specimen should be conditioned before testing, it is recommended that the conditioning time be for the specimen to be at $25^{\circ}C$. Test must be conducted for the specimen cured well before conditioning for desired test. If curing temperature was lower or higher than normal, and mixture was not properly cured, then test results would not be reliable. This study showed how long the specimen should be submerged at $60^{\circ}C$ for Marshall test and conditioned at $25^{\circ}C$ for ITS test for the specimens cured in different temperature.

  • PDF

Fundamental Properties of Asphalt Concrete Mixture as Using TDF Fly Ash as Mineral Filler (아스팔트 콘크리트 채움재로 TDF Fly Ash 적용에 따른 아스팔트 혼합물 기초 물성 평가)

  • Choi, Min-Ju;Kim, Hyeokjung;Kim, Yongjoo;Lee, Jaejun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.2
    • /
    • pp.497-505
    • /
    • 2017
  • TDF (Tire derived fuel) Fly ash is an industrial by-product when scraped tire was used a fuel source at the power plant. TDF Fly ash has been classified as domestic waste at the workplace so far and has not been appropriately utilized. We conducted a fundamental physical property test of asphalt mixture to investigate the possibility of using TDF Fly ash as a mineral filler of asphalt mixture for exploring new usage strategies. TDF Fly ash meets KS F 3501 asphalt mixture mineral filler criteria. And the optimal asphalt binder amount was determined to be 4.5% by Marshall design. Mineral filler content was determined at 3% and analyzed by comparing using mineral filler as stone powder. The basic physical property test of the asphalt mixture was evaluated to the provision indicated in "Production and Construction Guidelines for Asphalt Mixture" published by the Ministry of Land, Infrastructure and Transport. In the test, Marshall stability test, dynamic immersion test, tensile strength ratio test, wheel tracking test were carried out. As a result of the experiment, Marshall stability and dynamic stability satisfied the standards, and confirmed the stability and Dynamic immersion and tensile strength ratio test that TDF Fly ash is more effective for scaling and moisture resistance than stone dust. Therefore, in this research, it is expected that multilateral utilization of TDF Fly ash, and a positive effect can be also expected.

Statistical Inference for Process Mean of Deformation Strength of Asphalt Mixtures (통계적 근거에 의한 표층 아스팔트 혼합물 변형강도의 배합강도 설정연구)

  • La, Il-Ho;Kim, Jin-C.;Doh, Young-S.;Kim, Kwang-W.
    • International Journal of Highway Engineering
    • /
    • v.11 no.1
    • /
    • pp.127-134
    • /
    • 2009
  • This study was performed to establish the process mean which is statistically satisfying the critical limit of deformation strength $(S_D)$, which is found to reflect rutting characteristics of asphalt mixture relatively well. The process means were determined using the critical $S_D$ values (3MPa for local highway and 4MPa for arterial highways), which were obtained from correlation analysis of APA and $S_D$ test data of actual highway projects, and coefficient of variation of 32 combinations of domestic mixtures. The process means of 3.2 MPa for local highway and 4.25 MPa for arterial highways were suggested when using 3 specimens (diameter of 100mm). However, since these values are based on the loading speed of 30mm/min, the higher values, 3.5 MPa for local highway and 4.5 MPa for arterial highways, were suggested, respectively, if the loading speed of 50mm/min is applied using the old Marshall machine, which should give higher test values.

  • PDF

Mechanical Characteristics of Asphalt Stabilized Soil (아스팔트 안정처리토의 역학적 특성 연구)

  • 박태순;최필호
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.5
    • /
    • pp.189-197
    • /
    • 2003
  • The treatment and hauling of surplus soils which occur from construction activity are costly and have been demanding a reasonable recycling method. This study presents laboratory test results regarding the mechanistic properties of asphalt stabilized soils. The foamed asphalt equipment which generates the asphalt bubble was used to mix the soil. The marshall stability, indirect tensile test, resilient modulus, creep test and triaxial test(UU) were conducted to find out the performance of the asphalt stabilized soil. The test results were compared with the samples that fabricated in different conditions(the samples without asphalt and the reinforced samples using 2% cement). The inclusion of the asphalt in the soil has improved the marshall stability, resilient modulus and moisture susceptibility, and the addition of the 2% cement has even more increased these properties. The amount of the fines and the optimum moisture contents for mixing affects the mechanistic properties and important parameters for mix design.

Evaluation of Characteristic Improvement of Waste-Polyethylene Asphalt Concrete (폐폴리에틸렌 필름 재활용 아스팔트 콘크리트의 특성 분석)

  • Kim, Kwang-Woo;Li, Xing-Fan;Jeong, Seung-Ho;Lee, Soon-Jae;Lee, Gi-Ho
    • International Journal of Highway Engineering
    • /
    • v.4 no.1 s.11
    • /
    • pp.161-170
    • /
    • 2002
  • This study is a fundamental research for recycling waste polyethylene film(WPF) in asphalt concrete for roadway pavement. The objective of this study is to develop technology of making waste polyethylene asphalt mixture and evaluate properties of the asphalt concrete containing WPF. Asphalt concrete for surface course of pavement was produced through an appropriate mix-design using dense-graded and gap-graded aggregates. Marshall mix design, indirect tensile strength test, wheel tracking test and tensile fatigue test were performed. Test result showed that some WPF asphalt mixtures had a high tensile property and good resistances against rutting and fatigue cracking, compared with normal asphalt mixture.

  • PDF

Mechanical Properties of an Open Graded Asphalt for Semi-rigid Pavement (반강성 포장용 개립도 아스팔트 재료의 성능평가)

  • Bang, Jin-Wook;Kim, Yun-Yong
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.1
    • /
    • pp.68-75
    • /
    • 2016
  • The present study evaluated the mechanical properties of open graded asphalt for semi-rigid pavements in order to determine the mixing proportion experimentally. A total twelve types of basic mixing proportions were set up and mechanical tests such as marshall stability, porosity, permeability, and cantabro loss were conducted based on Korean standards. From the tests results, it was found that the marshall stability in case of straight and modified asphalt increase up to the contents with 5.0% and 5.5% respectively. The porosity and permeability of asphalt tended to decrease as the asphalt contents increase, the coefficient of correlation between both were estimated 86%. The increase contents with asphalt range from 3.5% to 6.0% tended to decrease the cantabro loss and the modified asphalt enhanced the resistance of cantabro loss with range from 18.8% to 33.1% than straight asphalt under same asphalt contents. In comparison with test results and quality standards, it was concluded that the modified asphalt content of 4.5% is effective to adopt for open graded asphalt.

Improvement of Marshall Mix Design and Comparative Evaluation with Current Marshall Mix Design Method (마샬 배합설계 방법의 개선과 기존 방법과의 비교 평가)

  • Hwang, Sung-Do;Yoon, An-Sang;Kim, Boo-Il
    • International Journal of Highway Engineering
    • /
    • v.6 no.4 s.22
    • /
    • pp.13-24
    • /
    • 2004
  • The Marshall mix design method used in Korea, which was described in the design & construction regulation, had been introduced from Japan Highway Cooperation standard guide. Most engineers have thought that it is the major reason that causes pavement distresses. Therefore, there is a need to modify the current Marshall mix design through using the volumetric design concept, which is most widely used in asphalt mix design. The modified mix design determines the preliminary optimum asphalt content at 4% VTM (Voids in Total Mix). If the Marshall properties, which are VFA, VMA, stability, and flow, were satisfied with the requirements, the preliminary optimum asphalt content is determined as the final optimum asphalt content. The modified Marshall mix design considers VMA. while the current Marshall mix design does not consider VMA. By considering the Marshall stability and flow as the criteria instead of design factors, the modified Marshall mix design is able to decrease the errors occurred in Marshall stability test The test was performed to compare the Marshall properties between current and modified Marshall mix design. The left results showed that there was no difference in the Marshall properties, except for VTM. Thus, the modified Marshall mix design can produce the asphalt mixtures with the constant VTM (4%), and it can improve the asphalt mixture quality in Korea.

  • PDF

A Study on the Storage Stability of Waste Vinyl-Modified Asphalt (폐비닐로 개질된 아스팔트의 저장안정성에 관한 연구)

  • Kim, Kang-San;Hong, Young-Keun
    • Elastomers and Composites
    • /
    • v.43 no.3
    • /
    • pp.191-198
    • /
    • 2008
  • It is said that polymer modified asphalt using polyethylene as modifier would show phase separation due to density difference and incompatibility between asphalt and polyethylene. In this study, to prevent coalescence of polyethylene in asphalt, we employed peroxides as phase separation inhibitor. On microscope, peroxides (dicumyl peroxide, lauroyl peroxide) with waste vinyl (comprising low density polyethylene) did not show phase separation, however, rheometer test showed phase separation at molecular level, i.e., polyethylene and asphalt are immiscible ultimately. Mechanical properties (tensile strength, Marshall stability, dynamic stability) showed waste vinyl-modified asphalts are highly resistant to plastic deformation and these properties are even better than those of Superphalt.

Development of Fracture Energy Measurement System of Asphalt Mixture Using Marshall Tester (마샬 안정도시험기를 이용한 아스팔트 혼합물의 파괴에너지 측정시스템 개발)

  • Kim, Boo-Il;Lee, Moon-Sup
    • International Journal of Highway Engineering
    • /
    • v.11 no.1
    • /
    • pp.135-144
    • /
    • 2009
  • The purpose of this study is to develop a simple and rational crack evaluation system using Marshall tester. Fracture energy were used as a parameter to evaluate the crack resistance of asphalt mixtures. Marshall tester basically measures the vertical deformation obtained from the linear variable differential transformer(LVDT) attached on the specimen's exterior, which can cause a measurement error due to the local deformation near the loading head. Therefore, the validity of the measurement system of Marshall tester should be tested to use it in calculation of fracture energy. Two types of indirect tensile strength tests were performed using four types of asphalt mixtures at two temperature conditions. From the tests, it was shown that local deformation near the loading head had not occurred before a specimen was fractured, so that it did not cause the measurement error of fracture energy. And also from the statistic analysis, the coefficient of variation of vertical deformation measurements obtained on specimen's exterior is less than 15%. Thus, vertical deformation measurements obtained on the specimen's exterior can be used in crack evaluation system using Marshall tester.

  • PDF