• Title/Summary/Keyword: 리튬 이차전지

Search Result 401, Processing Time 0.026 seconds

반응성 스퍼터링에 의한 마이크로 박막 전지용 산화바나듐 박막의 제작 및 전기화학적 특성평가

  • 전은정;신영화;남상철;조원일;윤영수
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.49-49
    • /
    • 1999
  • 리튬 이차 전지를 박막화함으로써 개발된 고상의 마이크로 박막전지는 임의의 크기 및 형태로의 제작이 가능하며 액체전해질을 사용하지 않기 때문에 작동 중 열 또는 기체 생성물이 생기지 않아 높은 안정성을 갖으며 광범위한 사용 온도 범위를 가진다. 위와 같은 장점으로 인하여 충전 가능한 고상의 박막형 리튬 이차 전지는 점진적으로 그 사용 범위가 크게 확대될 것으로 판단된다. 즉, 초소형 전자, 전기 소자는 물론이며 조만간 실현될 스마트 카드, 셀루러폰 및 PCS와 같은 개인용 휴대 통신장비의 전력 공급계로의 응용이 가능할 것이다. 특히 장수명, 고에너지 밀도를 갖는 초소형의 전지를 필요로 하는 microelectronics, MEMS등에 이용될 수 있는 이차전지에 대한 요구가 점점 가시화 됨에 따라 박막공정을 이용한 이차전지개발기술이 요구되고 있으며, 박막제조기술을 이용한 고상의 박막형 및 전지에 관한 연구가 증가하고 있다. 본 연구에서는 박막형 리튬 이차전지의 Cathode 물질로써 비정질의 산화바나듐 박막을 반응성 스퍼터링에 의하여 상온에서 증착하였다. 박막형 이차전지의 여러 가지 Cathode 물질중 산화바나듐은 다른 물질들과는 달리 비정질 형태로 매우 우수한 충방전 특성을 나타낸다. 이런 특성으로 인해 다소 전지자체의 성능은 낮지만 저전력 저전압을 필요로 하는 초소형 전자 소자와 혼성되어 이용할 수 있는 잠재성이 매우 높은 물질이다. 바나듐 타겟의 경우 타겟 표면의 ageing에 따라 증착되는 박막의 특성이 매우 달라지게 되므로 presputtering의 시간을 변화시키면서 실험하였다. 또한 스퍼터링 중의 산소의 분압도 타겟의 ageing에 많은 영향을 주므로 실험 변수로 산소분압을 변화시키면서 실험하였다. 증착된 산화바나듐 박막의 표면은 scanning electron microscopy로 분석하였으며 구조 분석은 X-선 회절분석, X-ray photoelectron spectroscopy 그리고Auger electron spectroscope로 하였다. 증착된 산화바나듐 박막의 전기화학적 특성을 분석하기 위하여 리튬 메탈을 anode로 하고 EC:DMC=1:1, 1M LiPF6 액체 전해질을 사용한 Half-Cell를 구성하여 200회 이상의 정전류 충 방전 시험을 행하였다. Half-Cell test 결과 박막의 결정성과 표면상태에 따라 매우 다른 전지 특성을 나타내었다.

  • PDF

콜타르 핏치로부터 제조한 리튬 이온 이차전지 부극재료의 특성

  • 홍현진;양갑승;윤광의;이동준
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 1998.10a
    • /
    • pp.508-511
    • /
    • 1998
  • 최근 들어 이동통근의 발달로 말미암아 이에 적합한 초경량, 초소형 전지의 개발이 요구된 Li은 지구상에 존재하는 흔한금속이며 그 환원 전위가 3.04V고 금속 중 가장 큰 전위값을 갖고 있다. 현재 상업화되어 있는 리튬이차전지는 정극에 대부분 LiCoO$_2$을 부극에 탄소재료를 사용하고 있다. (중략)

  • PDF

Polypyrrole-coated Carbon Nanotube as High Capacity Anode Material for Aqueous Rechargeable Na-ion Battery (수계 나트륨 이차전지용 고속 충·방전 음극 활물질로서의 폴리피롤-CNT)

  • Im, Ha-Na;Lee, Ho-Nyeon;Kim, Hyeon-Jong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2015.11a
    • /
    • pp.253-253
    • /
    • 2015
  • 수계 나트륨 이차전지는 발화 위험이 전혀 없고, 기존 유기계 리튬 배터리에 비해 고속 충 방전 특성을 가지며, 리튬 대신 나트륨을 적용해 가격 경쟁력에서도 매우 우수한 포스트 리튬 이차전지로 알려져 있다. 본 연구에서는 폴리피롤을 CNT 표면에서 중합하여 나노 코드 형태의 PPy/CNT를 제조하여 수계 나트륨 이차전지의 음극 활물질로 적용하였다. 폴리피롤과 CNT의 복합화에 의해 이론용량에 가까운 용량을 얻을 수 있었으며, 10C 이상의 고속 충 방전 조건에서도 안정적인 출력을 보이는 것으로 확인하였다. 벌크상태의 PPy에서는 볼 수 없는 독특한 전기화학적 특성이 있음을 확인하였으며, 폴리피롤에서의 독특한 충 방전 메커니즘을 제안할 수 있었다.

  • PDF

Research Trend of Solid Electrolyte for Lithium Rechargeable Batteries (리튬 이차전지용 고체전해질 개발 동향)

  • Suh, Soon-Sung;Yi, Cheol-Woo;Kim, Keon
    • Journal of the Korean Electrochemical Society
    • /
    • v.15 no.1
    • /
    • pp.1-11
    • /
    • 2012
  • Recently lithium ion secondary batteries (LIB) have rapidly developed because of their advantages such as high energy densities and capacities. Among them, an electrical vehicle which is the one of the environmental-friendly transportation facilities has been received a great attention, but, it is needed to overcome several obstacles of the LIB performances. LIB is practically adapted to Hybrid Electric Vehicle (HEV), but the issues for high capacities, long life time and safety should be solved. Moreover, LIBs still have some possibilities of explosion in the case of overheating of the used organic electrolyte and overcharging of the cell. Hence, it is urgently needed to replace the liquid electrolytes into the solid electrolytes due to the safety issues. Therefore, in this review, we summarized and discussed the research trends of the solid electrolyte to solve the concerns of safety and capacity of LIBs and published patents and articles.

Research Trends of Cathode Materials for Next Generation Lithium Ion Battery (리튬이온전지(Lithium Ion Battery) 양극 물질 연구동향)

  • Na, Sung Min;Park, Hyun Gyu;Kim, Sun Wook;Cho, Hyuk Hee;Park, Kwanggjin
    • Prospectives of Industrial Chemistry
    • /
    • v.23 no.1
    • /
    • pp.3-17
    • /
    • 2020
  • 리튬이온전지(LIB)는 기존의 다른 이차전지와 다른 확실한 몇 가지 장점이 있다. 높은 작동 전압과 높은 에너지 밀도, 긴 수명, 그리고 낮은 자체 방전 속도이다. 이러한 장점으로 모바일 제품에서부터 전기 자동차(battery electric vehicle, BEV), 최근에는 전기저장장치(energy storage system, ESS)까지 다양한 분야에서 사용되고 있다. 하지만 사용 범위가 증가함에 따라 높은 안정성을 가지며 더 큰 에너지 용량을 나타내는 리튬이온전지에 대한 요구가 점점 더 커지게 되었다. 리튬이온전지의 용량 증가는 전지의 설계보다는 양극 및 음극 재료, 분리막 및 전해질과 같은 주요 전지 재료의 기술적 진보에 달려 있다. 주요 전지 소재 중에 전지의 성능에 가장 큰 영향을 미치는 것은 전지 반응에 의한 과전압과 가격이 가장 비싼 양극이다. 본 기획 특집에서는 리튬이차전지의 성능에 가장 큰 영향을 미치는 양극 물질의 종류와 향후 연구동향에 대해서 소개하고자 한다. 양극 물질의 발전 방향, 안정성과 용량 증대를 위해서 최근 연구되고 있는 방향에 대해서 자세하게 소개한다.

Effect of Protection Circuit Module for Li-Secondary Battery on Electrolyte Leakage (전해액 누액에 의한 리튬이차전지 보호회로의 영향)

  • Nam, Jong-ha
    • Proceedings of the KIPE Conference
    • /
    • 2016.07a
    • /
    • pp.413-414
    • /
    • 2016
  • 리튬이차전지는 양극과 음극이 충전과 방전을 반복적으로 수행할 수 있는 구조를 가지고 있으며, 전극 내에서의 이온의 삽입 및 탈리가 용이하고 이들 과정이 진행되는 동안 전극의 구조가 안정하게 유지되어야 하는 전해질은 이온의 전달을 용이하게 하여야 한다. 전지에서 전극 내로 삽입되는 이온은 집전체를 통해 전극으로 들어온 전자와 전하중성을 이루어 전극 내에 전기 에너지를 저장하는 매개체가 된다. 리튬이차전지에서 전해액은 유기 전해액이 사용되고 있으며, 유기용매에 이온원으로서 용질인 리튬염을 용해시킨 것이지만 폭 넓은 환경조건하에서도 이온의 이동을 계속적으로 원활하게 하여 실용전지로서 충분한 역할을 하도록 만드는 중요한 재료이다. 본 논문에서는 전지에서 유기 전해액의 누액이 발생시 보호회로에 미치는 영향에 대해 소개하고자 한다.

  • PDF

Technology Trends for Lithium Secondary Batteries (리튬 이차전지 기술 동향)

  • Y.H. Choi;H.S. Chung
    • Electronics and Telecommunications Trends
    • /
    • v.38 no.5
    • /
    • pp.90-99
    • /
    • 2023
  • Recently, with the trend of information technology convergence and electrification, batteries are being widely used in fields such as industry, transportation, and specific applications. By 2030, the secondary battery market is expected to grow explosively by more than eight times compared with 2020 to $351.7 billion owing to the expanding adoption of electric vehicles. Depending on the electrochemical reactions in the electrode, a primary battery can only discharge through an irreversible reaction, while a secondary battery can be repeatedly charged and discharged using reversible reactions. According to the type of charge carrier ions, secondary batteries may be classified into those made of lithium, sodium, potassium, magnesium, and aluminum ions. We analyze the current status and technological issues of lithium-ion batteries, lithium-sulfur batteries, and solid-state batteries, which are representative examples of lithium secondary batteries. In addition, research trends in lithium secondary batteries are discussed.

Li-Ion Traction Batteries for All-Electric Vehicle (전 전기자동차용 리튬이온 이차전지 기술동향)

  • Cho, Mann;Nah, Do-Baek;Kil, Sang-Chul;Kim, Sang-Woo
    • Journal of Energy Engineering
    • /
    • v.20 no.2
    • /
    • pp.109-122
    • /
    • 2011
  • The production capacity of EV models should be sufficient to achieve the goal of one million EVs by 2015. Large-Format lithium-ion battery are expected to find a prominent role as ideal electrochemical storage systems in traction power train for sustainable vehicles such as all-electric vehicles. This review focuses first on the present status of production lithium-ion battery technology and cooperative relations of between battery and EV makers, then on its near future development.

Lithium-Ion Batteries for Plug-In Hybrid Electric Vehicle (플러그인 하이브리드자동차용 리튬이온 이차전지)

  • Cho, Mann;Son, Young-Mok;Nah, Do-Baek;Kil, Sang-Cheol;Kim, Sang-Woo
    • Journal of Energy Engineering
    • /
    • v.19 no.2
    • /
    • pp.81-91
    • /
    • 2010
  • Plug-in hybrid electric vehicles(PHEVs) are gaining attention over the world due to their abilities to reduce $CO_2$ emission and gasoline/diesel consumption by using electricity from the grid. Lithium ion battery is one of the most suitable candidates as energy storage device for PHEVs applications up to 2030. This review focuses on the present status of lithium ion battery technology, then on comparison of the performance characteristics of the promising cathode materials.

Thermal and electrochemical studies of triazine derivatives as flame retardant additives in Li-ion battery (리튬이차전지의 고온 안전성 첨가제로써의 Triazine 유도체)

  • Ahn, Se-Young;Kim, Ke-Tack;Kam, Dae-Woong;Kim, Hyun-Soo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.441-441
    • /
    • 2008
  • 전지의 안전성은 리튬이차전지에서 가장 중요한 요소로 주목받고 있다. 대형전지나 하이브리드 자동차와 같은 저장장치는 안전회로의 발전이나, 안성성과 신뢰성이 높은 물질이 도입되어야 하는 선결조건이 있다. Triazine 유도체는 산업용 난연제로 알려져 있다. 이를 전지로 도입하기 위한 시도는 아직 보고되어 있지 않다. 난연성 물질을 전지에 첨가하면, 그 난연성을 증가하는데, 전지의 성능을 저해하는 단점을 많이 관찰해왔다. 이 논문에는 Triazine 유도체를 전해액 첨가제로 사용하여, 전지성능의 저해여부를 관찰하고 아울러 전지의 열안전성을 측정함으로서 난연 첨가제로서 가능성을 판단하고자 하였다. 실험결과는 전지의 성능을 저해하지 않고 전극의 열안전성을 개선하는 것을 보여주었다.

  • PDF