References
- Y. Cho, P. Oh, and J. Cho, A new type of protective surface layer for high-capacity Ni-based cathode materials: Nanoscaled surface pillaring layer, Nano Lett., 13, 1145-1152 (2013). https://doi.org/10.1021/nl304558t
- B. L. Ellis, K. T. Lee, and L. F. Nazar, Positive electrode materials for Li-ion and Li-batteries, Chem. Mater., 22, 691-714 (2010). https://doi.org/10.1021/cm902696j
- H. Xia, H. Wang, W. Xiao, L. Lu, and M. O. Lai, Properties of LiNi1/3Co1/3Mn1/3O2 cathode material synthesized by a modified Pechini method for high-power lithium-ion batteries, J. Alloys Compd., 480, 696-701 (2009). https://doi.org/10.1016/j.jallcom.2009.02.023
- J. Li, R. Yao, and C. Cao, LiNi1/3Co1/3Mn1/3O2 nanoplates with {010} active planes exposing prepared in polyol medium as a high-performance cathode for Li-ion battery, ACS Appl. Mater. Interfaces, 6, 5075-5082 (2014). https://doi.org/10.1021/am500215b
- A. R. Armstrong, M. Holzapfel, P. Novak, C. S. Johnson, S. H. Kang, M. M. Thackeray, and P. G. Bruce, Demonstrating oxygen loss and associated structural reorganization in the lithium battery cathode Li[Ni0.2Li0.2Mn0.6]O2, J. Am. Chem. Soc., 128, 8694-8698 (2006). https://doi.org/10.1021/ja062027+
- J. Xu, M. Sun, R. Qiao, S. E. Renfrew, L. Ma, T. Wu, S. Hwang, D. Nordlund, D. Su, K. Amine, J. Lu, B. D. McCloskey, W. Yang, and W. Tong, Elucidating anionic oxygen activity in lithium-rich layered oxides, Nat. Commun., 9, 947 (2018). https://doi.org/10.1038/s41467-018-03403-9
- V. Pimenta, M. Sathiya, D. Batuk, A. M. Abakumov, D. Giaume, S. Cassaignon, D. Larcher, and J.-M. Tarascon, Synthesis of Li-rich NMC: A comprehensive study, Chem. Mater., 29, 9923-9936 (2017). https://doi.org/10.1021/acs.chemmater.7b03230
- C. V. Rao, A. L. M. Reddy, Y. Ishikawa, and P. M. Ajayan, LiNi1/3Co1/3Mn1/3O2 graphene composite as a promising cathode for lithium-ion batteries, ACS Appl. Mater. Interfaces, 3, 2966-2972 (2011). https://doi.org/10.1021/am200421h
- C. S. Kang and J. T. Son, Synthesis and electrochemical properties of LiNi1/3Co1/3Mn1/3O2 cathode materials by electrospinning process, J. Electroceram., 29, 235-239 (2012). https://doi.org/10.1007/s10832-012-9762-z
- C. H. Jo, D. H. Cho, H. J. Noh, H. Yashiro, Y. K. Sun, and S. T. Myung, An effective method to reduce residual lithium compounds on Ni-rich Li[Ni0.6Co0.2Mn0.2]O2 active material using a phosphoric acid derived Li3PO4 nanolayer, Nano Res., 8, 1464-1479 (2015). https://doi.org/10.1007/s12274-014-0631-8
- D. Becker, M. Borner, R. NColle, M. Diehl, S. Klein, U. Rodehorst, R. Schmuch, M. Winter, and T. Placke, Surface modification of Ni-rich LiNi0.8Co0.1Mn0.1O2 cathode material by tungsten oxide coating for improved electrochemical performance in lithium ion batteries, ACS Appl. Mater. Interfaces, 11, 18404-18414 (2019). https://doi.org/10.1021/acsami.9b02889
- Y. C. Li, W. Xiang, Y. Xiao, Z. G. Wu, C. L. Xu, W. Xu, Y. Xu, C. Wu, Z. Yang, and X. D. Guo, Synergy of doping and coating induced heterogeneous structure and concentration gradient in Ni-rich cathode for enhanced electrochemical performance, J. Power Sources, 423, 144-151 (2019). https://doi.org/10.1016/j.jpowsour.2019.03.073
- T. Chen, X. Li, H. Wang, X. Yan, L. Wang, B. Deng, W. Ge, and M. Qu, The effect of gradient boracic polyanion-doping on structure, morphology, and cycling performance of Ni-rich LiNi0.8Co0.15Al0.05O2 cathode material, J. Power Sources, 374, 1-11 (2018). https://doi.org/10.1016/j.jpowsour.2017.11.020
- H. M. K. Sari, and X. Li, Controllable cathodeeelectrolyte interface of Li [Ni0.8Co0.1Mn0.1]O2 for lithium ion batteries: A review, Adv. Energy Mater., 1901597 (2019). https://doi.org/10.1002/aenm.201901597
- H. Yu, Y. Li, Y. Hu, H. Jiang, and C. Li, 110th anniversary: Concurrently coating and doping high-valence vanadium in nickel-rich lithiated oxides for high-rate and stable lithium-ion batteries, Ind. Eng. Chem. Res., 58, 4108-4115 (2019). https://doi.org/10.1021/acs.iecr.8b06162
- L. Wang, G. Liu, X. Ding, C. Zhan, and X. Wang, Simultaneous coating and doping of a nickel-rich cathode by an oxygen ion conductor for enhanced stability and power of lithium-ion batteries, ACS Appl. Mater. Interfaces, 11, 33901-33912 (2019). https://doi.org/10.1021/acsami.9b10310
- M. Nanthagopal, P. Santhoshkumar, N. Shaji, S. Praveen, H. S. Kang, C. Senthil, and C. W. Lee, Nitrogen-doped carbon-coated Li[Ni0.8Co0.1Mn0.1]O2 cathode material for enhanced lithium-ion storage, Appl. Surf. Sci., 492, 871-878 (2019). https://doi.org/10.1016/j.apsusc.2019.06.242
- S. W. Doo, S. Lee, H. Kim, J. H. Choi, and K. T. Lee, Hydrophobic Ni-rich layered oxides as cathode materials for lithium-ion batteries, ACS Appl. Energy Mater., 2, 6246-6453 (2019). https://doi.org/10.1021/acsaem.9b00786
- Z. Luo, H. Zhang, L. Yu, D. Huang, and J. Shen, Improving long-term cyclic performance of LiNi0.8Co0.15Al0.05O2 cathode by introducing a film forming additive, J. Electroanal. Chem., 833, 520-526 (2019). https://doi.org/10.1016/j.jelechem.2018.12.041
- P. Yan, J. Zheng, J. Liu, B. Wang, X. Chen, Y. Zhang, X. Sun, C. Wang, and J. G. Zhang, Tailoring of grain boundary structure and chemistry of cathode particles for enhanced cycle stability of lithium ion battery, Nat. Energy, 3, 600-605 (2018). https://doi.org/10.1038/s41560-018-0191-3
- B. Dunn, H. Kamath, and J.-M. Tarascon, Electrical energy storage for the grid: A battery of choices, Science, 334, 928e935 (2011). https://doi.org/10.1126/science.1212741
- A. Manthiram, K. Chemelewskia, and E.-S. Lee, A perspective on the high-voltage LiMn1.5Ni0.5O4 spinel cathode for lithium-ion batteries, Energy Environ. Sci., 7, 1339e1350 (2014). https://doi.org/10.1039/c3ee42981d
- M. Gu, A. Genc, I. Belharouak, D. Wang, K. Amine, S. Thevuthasan, D. R. Baer, J. Zhang, N. D. Browning, J. Liu, and C. Wang, Nanoscale phase separation, cation ordering, and surface chemistry in pristine Li1.2Ni0.2Mn0.6O2 for Li-ion batteries, Chem. Mater., 25, 2319e2326 (2013). https://doi.org/10.1021/cm4009392
- G.-L. Xu, Y. Qin, Y. Ren, L. Cai, K. An, K. Amine, and Z. Chen, The migration mechanism of transition metal ions in LiNi0.5Mn1.5O4, J. Mater. Chem. A, 3, 13031e13038 (2015). https://doi.org/10.1039/C5TA02522B
- Y.-K. Sun, S.-T. Myung, B.-C. Park, J. Prakash, I. Belharouak, and K. Amine, Highenergy cathode material for long-life and safe lithium batteries, Nat. Mater., 8 (2009).
- F. Wu, J. Tian, Y. Su, J. Wang, C. Zhang, L. Bao, T. He, J. Li, and S. Chen, Effect of Ni2þ content on lithium/nickel disorder for Ni-rich cathode materials, ACS Appl. Mater. Interfaces (2015).
- K. Park, J.-H. Park, S.-G. Hong, B. Choi, S. Heo, S.-W. Seo, K. Min, and J.-H. Park, Reconstruction layer effect of LiNi0.8Co0.15Mn0.05O2 with solvent evaporation process, Sci. Rep., 48, 8108 (2017).
- H. Lee, Y. Kim, Y.-S. Hong, Y. Kim, M. G. Kim, N.-S. Shin, and J. Cho, Structural characterization of the surface-modified LixNi0.9Co0.1O2 cathode materials by MPO4 coating (M¼Al, Ce, SrH, and Fe) for Li-ion cells, J. Electrochem. Soc., 153, A781 (2006). https://doi.org/10.1149/1.2172567
- G. V. Zhuang, G. Chen, J. Shim, X. Song, P. N. Ross, and T. J. Richardson, Li2CO3 in LiNi0.8Co0.15Al0.05O2 cathodes and its effects on capacity and power, J. Power Sources, 134, 293e297 (2004). https://doi.org/10.1016/j.jpowsour.2004.02.030
- J. Hyeon, C. Jo, H. Yashiro, S. Kim, and S. Myung, Re-heating effect of Ni-rich cathode material on structure and electrochemical properties, J. Power Sources, 313, 1e8 (2016). https://doi.org/10.1016/j.jpowsour.2016.02.015
- S.-T. Myung, F. Maglia, K.-J. Park, C. S. Yoon, P. Lamp, S.-J. Kim, and Y.-K. Sun, Nickel-rich layered cathode materials for automotive lithium-ion batteries: Achievements and perspectives, ACS Energy Lett., 2, 196-223 (2017). https://doi.org/10.1021/acsenergylett.6b00594
- A. Manthiram, J. C. Knight, S.-T. Myung, S.-M. Oh, and Y.-K. Sun, Nickel-rich and lithium-rich layered oxide cathodes: Progress and perspectives, Adv. Energy Mater., 6, 1501010 (2016). https://doi.org/10.1002/aenm.201501010
- S.-T. Myung, K. Amine, and Y.-K. Sun, Nanostructured cathode materials for rechargeable lithium batteries, J. Power Sources, 283, 219-236 (2015). https://doi.org/10.1016/j.jpowsour.2015.02.119
- H.-J. Noh, S. Youn, C. S. Yoon, and Y.-K. Sun, Comparison of the structural and electrochemical properties of layered Li[NixCoyMnz]O2 (x = 1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion batteries, J. Power Sources, 233, 121-130 (2013). https://doi.org/10.1016/j.jpowsour.2013.01.063
- K.-S. Lee, S.-T. Myung, K. Amine, H. Yashiro, and Y.-K. Sun, Structural and electrochemical properties of layered Li [Ni1-2xCoxMnx]O2 (x = 0.1-0.3) positive electrode materials for Li-ion batteries, J. Electrochem. Soc., 154, A971-A977 (2007). https://doi.org/10.1149/1.2769831
- C. S. Yoon, M. H. Choi, B.-B. Lim, E.-J. Lee, and Y.-K. Sun, Review - high-capacity Li[Ni1-xCox/2Mnx/2]O2 (x = 0.1, 0.05, 0) cathodes for next-generation Li-ion battery, J. Electrochem. Soc., 162, A2483-A2489 (2015). https://doi.org/10.1149/2.0101514jes
- D. P. Abraham, R. D. Twesten, M. Balasubramanian, I. Petrov, J. McBreen, and K. Amine, Surface changes on LiNi0.8Co0.2O2 particles during testing of high-power lithium-ion cells, Electrochem. Commun., 4, 620-625 (2002). https://doi.org/10.1016/S1388-2481(02)00388-0
- S. Muto, Y. Sasano, K. Tatsumi, T. Sasaki, K. Horibuchi, Y. Takeuchi, and Y. Ukyo, Capacity-fading mechanisms of LiNiO2-based lithium-ion batteries, J. Electrochem. Soc., 156, A371-A377 (2009). https://doi.org/10.1149/1.3076137
- S. Zheng, R. Huang, Y. Makimura, Y. Ukyo, C. A. J. Fisher, T. Hirayama, and Y. Ikuhara, Microstructural changes in LiNi0.8Co0.15Al0.05O2 positive electrode material during the first cycle, J. Electrochem. Soc., 158, A357-A362 (2011). https://doi.org/10.1149/1.3544843
- J. H. Lee, C. S. Yoon, J.-Y. Hwang, S.-J. Kim, F. Maglia, P. Lamp, S.-T. Myung, and Y.-K. Sun, High-energy-density lithium-ion battery using a carbon-nanotube-Si composite anode and a compositionally graded Li[Ni0.85Co0.05Mn0.10]O2 cathode, Energy Environ. Sci., 9, 2152-2158 (2016). https://doi.org/10.1039/c6ee01134a
- D. Aurbach, Review of selected electrode-solution interactions which determine the performance of Li and Li ion batteries, J. Power Sources, 89, 206-218 (2000). https://doi.org/10.1016/S0378-7753(00)00431-6