Research Trends of Cathode Materials for Next Generation Lithium Ion Battery

리튬이온전지(Lithium Ion Battery) 양극 물질 연구동향

  • Na, Sung Min (Department of Mechanical Engineering Gachon University) ;
  • Park, Hyun Gyu (Department of Mechanical Engineering Gachon University) ;
  • Kim, Sun Wook (Department of Mechanical Engineering Gachon University) ;
  • Cho, Hyuk Hee (Department of Mechanical Engineering Gachon University) ;
  • Park, Kwanggjin (Department of Mechanical Engineering Gachon University)
  • 나성민 (가천대학교 기계공학과) ;
  • 박현규 (가천대학교 기계공학과) ;
  • 김선욱 (가천대학교 기계공학과) ;
  • 조혁희 (가천대학교 기계공학과) ;
  • 박광진 (가천대학교 기계공학과)
  • Published : 2020.02.28

Abstract

리튬이온전지(LIB)는 기존의 다른 이차전지와 다른 확실한 몇 가지 장점이 있다. 높은 작동 전압과 높은 에너지 밀도, 긴 수명, 그리고 낮은 자체 방전 속도이다. 이러한 장점으로 모바일 제품에서부터 전기 자동차(battery electric vehicle, BEV), 최근에는 전기저장장치(energy storage system, ESS)까지 다양한 분야에서 사용되고 있다. 하지만 사용 범위가 증가함에 따라 높은 안정성을 가지며 더 큰 에너지 용량을 나타내는 리튬이온전지에 대한 요구가 점점 더 커지게 되었다. 리튬이온전지의 용량 증가는 전지의 설계보다는 양극 및 음극 재료, 분리막 및 전해질과 같은 주요 전지 재료의 기술적 진보에 달려 있다. 주요 전지 소재 중에 전지의 성능에 가장 큰 영향을 미치는 것은 전지 반응에 의한 과전압과 가격이 가장 비싼 양극이다. 본 기획 특집에서는 리튬이차전지의 성능에 가장 큰 영향을 미치는 양극 물질의 종류와 향후 연구동향에 대해서 소개하고자 한다. 양극 물질의 발전 방향, 안정성과 용량 증대를 위해서 최근 연구되고 있는 방향에 대해서 자세하게 소개한다.

Keywords

References

  1. Y. Cho, P. Oh, and J. Cho, A new type of protective surface layer for high-capacity Ni-based cathode materials: Nanoscaled surface pillaring layer, Nano Lett., 13, 1145-1152 (2013). https://doi.org/10.1021/nl304558t
  2. B. L. Ellis, K. T. Lee, and L. F. Nazar, Positive electrode materials for Li-ion and Li-batteries, Chem. Mater., 22, 691-714 (2010). https://doi.org/10.1021/cm902696j
  3. H. Xia, H. Wang, W. Xiao, L. Lu, and M. O. Lai, Properties of LiNi1/3Co1/3Mn1/3O2 cathode material synthesized by a modified Pechini method for high-power lithium-ion batteries, J. Alloys Compd., 480, 696-701 (2009). https://doi.org/10.1016/j.jallcom.2009.02.023
  4. J. Li, R. Yao, and C. Cao, LiNi1/3Co1/3Mn1/3O2 nanoplates with {010} active planes exposing prepared in polyol medium as a high-performance cathode for Li-ion battery, ACS Appl. Mater. Interfaces, 6, 5075-5082 (2014). https://doi.org/10.1021/am500215b
  5. A. R. Armstrong, M. Holzapfel, P. Novak, C. S. Johnson, S. H. Kang, M. M. Thackeray, and P. G. Bruce, Demonstrating oxygen loss and associated structural reorganization in the lithium battery cathode Li[Ni0.2Li0.2Mn0.6]O2, J. Am. Chem. Soc., 128, 8694-8698 (2006). https://doi.org/10.1021/ja062027+
  6. J. Xu, M. Sun, R. Qiao, S. E. Renfrew, L. Ma, T. Wu, S. Hwang, D. Nordlund, D. Su, K. Amine, J. Lu, B. D. McCloskey, W. Yang, and W. Tong, Elucidating anionic oxygen activity in lithium-rich layered oxides, Nat. Commun., 9, 947 (2018). https://doi.org/10.1038/s41467-018-03403-9
  7. V. Pimenta, M. Sathiya, D. Batuk, A. M. Abakumov, D. Giaume, S. Cassaignon, D. Larcher, and J.-M. Tarascon, Synthesis of Li-rich NMC: A comprehensive study, Chem. Mater., 29, 9923-9936 (2017). https://doi.org/10.1021/acs.chemmater.7b03230
  8. C. V. Rao, A. L. M. Reddy, Y. Ishikawa, and P. M. Ajayan, LiNi1/3Co1/3Mn1/3O2 graphene composite as a promising cathode for lithium-ion batteries, ACS Appl. Mater. Interfaces, 3, 2966-2972 (2011). https://doi.org/10.1021/am200421h
  9. C. S. Kang and J. T. Son, Synthesis and electrochemical properties of LiNi1/3Co1/3Mn1/3O2 cathode materials by electrospinning process, J. Electroceram., 29, 235-239 (2012). https://doi.org/10.1007/s10832-012-9762-z
  10. C. H. Jo, D. H. Cho, H. J. Noh, H. Yashiro, Y. K. Sun, and S. T. Myung, An effective method to reduce residual lithium compounds on Ni-rich Li[Ni0.6Co0.2Mn0.2]O2 active material using a phosphoric acid derived Li3PO4 nanolayer, Nano Res., 8, 1464-1479 (2015). https://doi.org/10.1007/s12274-014-0631-8
  11. D. Becker, M. Borner, R. NColle, M. Diehl, S. Klein, U. Rodehorst, R. Schmuch, M. Winter, and T. Placke, Surface modification of Ni-rich LiNi0.8Co0.1Mn0.1O2 cathode material by tungsten oxide coating for improved electrochemical performance in lithium ion batteries, ACS Appl. Mater. Interfaces, 11, 18404-18414 (2019). https://doi.org/10.1021/acsami.9b02889
  12. Y. C. Li, W. Xiang, Y. Xiao, Z. G. Wu, C. L. Xu, W. Xu, Y. Xu, C. Wu, Z. Yang, and X. D. Guo, Synergy of doping and coating induced heterogeneous structure and concentration gradient in Ni-rich cathode for enhanced electrochemical performance, J. Power Sources, 423, 144-151 (2019). https://doi.org/10.1016/j.jpowsour.2019.03.073
  13. T. Chen, X. Li, H. Wang, X. Yan, L. Wang, B. Deng, W. Ge, and M. Qu, The effect of gradient boracic polyanion-doping on structure, morphology, and cycling performance of Ni-rich LiNi0.8Co0.15Al0.05O2 cathode material, J. Power Sources, 374, 1-11 (2018). https://doi.org/10.1016/j.jpowsour.2017.11.020
  14. H. M. K. Sari, and X. Li, Controllable cathodeeelectrolyte interface of Li [Ni0.8Co0.1Mn0.1]O2 for lithium ion batteries: A review, Adv. Energy Mater., 1901597 (2019). https://doi.org/10.1002/aenm.201901597
  15. H. Yu, Y. Li, Y. Hu, H. Jiang, and C. Li, 110th anniversary: Concurrently coating and doping high-valence vanadium in nickel-rich lithiated oxides for high-rate and stable lithium-ion batteries, Ind. Eng. Chem. Res., 58, 4108-4115 (2019). https://doi.org/10.1021/acs.iecr.8b06162
  16. L. Wang, G. Liu, X. Ding, C. Zhan, and X. Wang, Simultaneous coating and doping of a nickel-rich cathode by an oxygen ion conductor for enhanced stability and power of lithium-ion batteries, ACS Appl. Mater. Interfaces, 11, 33901-33912 (2019). https://doi.org/10.1021/acsami.9b10310
  17. M. Nanthagopal, P. Santhoshkumar, N. Shaji, S. Praveen, H. S. Kang, C. Senthil, and C. W. Lee, Nitrogen-doped carbon-coated Li[Ni0.8Co0.1Mn0.1]O2 cathode material for enhanced lithium-ion storage, Appl. Surf. Sci., 492, 871-878 (2019). https://doi.org/10.1016/j.apsusc.2019.06.242
  18. S. W. Doo, S. Lee, H. Kim, J. H. Choi, and K. T. Lee, Hydrophobic Ni-rich layered oxides as cathode materials for lithium-ion batteries, ACS Appl. Energy Mater., 2, 6246-6453 (2019). https://doi.org/10.1021/acsaem.9b00786
  19. Z. Luo, H. Zhang, L. Yu, D. Huang, and J. Shen, Improving long-term cyclic performance of LiNi0.8Co0.15Al0.05O2 cathode by introducing a film forming additive, J. Electroanal. Chem., 833, 520-526 (2019). https://doi.org/10.1016/j.jelechem.2018.12.041
  20. P. Yan, J. Zheng, J. Liu, B. Wang, X. Chen, Y. Zhang, X. Sun, C. Wang, and J. G. Zhang, Tailoring of grain boundary structure and chemistry of cathode particles for enhanced cycle stability of lithium ion battery, Nat. Energy, 3, 600-605 (2018). https://doi.org/10.1038/s41560-018-0191-3
  21. B. Dunn, H. Kamath, and J.-M. Tarascon, Electrical energy storage for the grid: A battery of choices, Science, 334, 928e935 (2011). https://doi.org/10.1126/science.1212741
  22. A. Manthiram, K. Chemelewskia, and E.-S. Lee, A perspective on the high-voltage LiMn1.5Ni0.5O4 spinel cathode for lithium-ion batteries, Energy Environ. Sci., 7, 1339e1350 (2014). https://doi.org/10.1039/c3ee42981d
  23. M. Gu, A. Genc, I. Belharouak, D. Wang, K. Amine, S. Thevuthasan, D. R. Baer, J. Zhang, N. D. Browning, J. Liu, and C. Wang, Nanoscale phase separation, cation ordering, and surface chemistry in pristine Li1.2Ni0.2Mn0.6O2 for Li-ion batteries, Chem. Mater., 25, 2319e2326 (2013). https://doi.org/10.1021/cm4009392
  24. G.-L. Xu, Y. Qin, Y. Ren, L. Cai, K. An, K. Amine, and Z. Chen, The migration mechanism of transition metal ions in LiNi0.5Mn1.5O4, J. Mater. Chem. A, 3, 13031e13038 (2015). https://doi.org/10.1039/C5TA02522B
  25. Y.-K. Sun, S.-T. Myung, B.-C. Park, J. Prakash, I. Belharouak, and K. Amine, Highenergy cathode material for long-life and safe lithium batteries, Nat. Mater., 8 (2009).
  26. F. Wu, J. Tian, Y. Su, J. Wang, C. Zhang, L. Bao, T. He, J. Li, and S. Chen, Effect of Ni2þ content on lithium/nickel disorder for Ni-rich cathode materials, ACS Appl. Mater. Interfaces (2015).
  27. K. Park, J.-H. Park, S.-G. Hong, B. Choi, S. Heo, S.-W. Seo, K. Min, and J.-H. Park, Reconstruction layer effect of LiNi0.8Co0.15Mn0.05O2 with solvent evaporation process, Sci. Rep., 48, 8108 (2017).
  28. H. Lee, Y. Kim, Y.-S. Hong, Y. Kim, M. G. Kim, N.-S. Shin, and J. Cho, Structural characterization of the surface-modified LixNi0.9Co0.1O2 cathode materials by MPO4 coating (M¼Al, Ce, SrH, and Fe) for Li-ion cells, J. Electrochem. Soc., 153, A781 (2006). https://doi.org/10.1149/1.2172567
  29. G. V. Zhuang, G. Chen, J. Shim, X. Song, P. N. Ross, and T. J. Richardson, Li2CO3 in LiNi0.8Co0.15Al0.05O2 cathodes and its effects on capacity and power, J. Power Sources, 134, 293e297 (2004). https://doi.org/10.1016/j.jpowsour.2004.02.030
  30. J. Hyeon, C. Jo, H. Yashiro, S. Kim, and S. Myung, Re-heating effect of Ni-rich cathode material on structure and electrochemical properties, J. Power Sources, 313, 1e8 (2016). https://doi.org/10.1016/j.jpowsour.2016.02.015
  31. S.-T. Myung, F. Maglia, K.-J. Park, C. S. Yoon, P. Lamp, S.-J. Kim, and Y.-K. Sun, Nickel-rich layered cathode materials for automotive lithium-ion batteries: Achievements and perspectives, ACS Energy Lett., 2, 196-223 (2017). https://doi.org/10.1021/acsenergylett.6b00594
  32. A. Manthiram, J. C. Knight, S.-T. Myung, S.-M. Oh, and Y.-K. Sun, Nickel-rich and lithium-rich layered oxide cathodes: Progress and perspectives, Adv. Energy Mater., 6, 1501010 (2016). https://doi.org/10.1002/aenm.201501010
  33. S.-T. Myung, K. Amine, and Y.-K. Sun, Nanostructured cathode materials for rechargeable lithium batteries, J. Power Sources, 283, 219-236 (2015). https://doi.org/10.1016/j.jpowsour.2015.02.119
  34. H.-J. Noh, S. Youn, C. S. Yoon, and Y.-K. Sun, Comparison of the structural and electrochemical properties of layered Li[NixCoyMnz]O2 (x = 1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion batteries, J. Power Sources, 233, 121-130 (2013). https://doi.org/10.1016/j.jpowsour.2013.01.063
  35. K.-S. Lee, S.-T. Myung, K. Amine, H. Yashiro, and Y.-K. Sun, Structural and electrochemical properties of layered Li [Ni1-2xCoxMnx]O2 (x = 0.1-0.3) positive electrode materials for Li-ion batteries, J. Electrochem. Soc., 154, A971-A977 (2007). https://doi.org/10.1149/1.2769831
  36. C. S. Yoon, M. H. Choi, B.-B. Lim, E.-J. Lee, and Y.-K. Sun, Review - high-capacity Li[Ni1-xCox/2Mnx/2]O2 (x = 0.1, 0.05, 0) cathodes for next-generation Li-ion battery, J. Electrochem. Soc., 162, A2483-A2489 (2015). https://doi.org/10.1149/2.0101514jes
  37. D. P. Abraham, R. D. Twesten, M. Balasubramanian, I. Petrov, J. McBreen, and K. Amine, Surface changes on LiNi0.8Co0.2O2 particles during testing of high-power lithium-ion cells, Electrochem. Commun., 4, 620-625 (2002). https://doi.org/10.1016/S1388-2481(02)00388-0
  38. S. Muto, Y. Sasano, K. Tatsumi, T. Sasaki, K. Horibuchi, Y. Takeuchi, and Y. Ukyo, Capacity-fading mechanisms of LiNiO2-based lithium-ion batteries, J. Electrochem. Soc., 156, A371-A377 (2009). https://doi.org/10.1149/1.3076137
  39. S. Zheng, R. Huang, Y. Makimura, Y. Ukyo, C. A. J. Fisher, T. Hirayama, and Y. Ikuhara, Microstructural changes in LiNi0.8Co0.15Al0.05O2 positive electrode material during the first cycle, J. Electrochem. Soc., 158, A357-A362 (2011). https://doi.org/10.1149/1.3544843
  40. J. H. Lee, C. S. Yoon, J.-Y. Hwang, S.-J. Kim, F. Maglia, P. Lamp, S.-T. Myung, and Y.-K. Sun, High-energy-density lithium-ion battery using a carbon-nanotube-Si composite anode and a compositionally graded Li[Ni0.85Co0.05Mn0.10]O2 cathode, Energy Environ. Sci., 9, 2152-2158 (2016). https://doi.org/10.1039/c6ee01134a
  41. D. Aurbach, Review of selected electrode-solution interactions which determine the performance of Li and Li ion batteries, J. Power Sources, 89, 206-218 (2000). https://doi.org/10.1016/S0378-7753(00)00431-6